Background: Extensive planting of transgenetic Bacillus thuringiensis crops has driven the evolution of pest resistance to Cry1Ac. Adjustment of cropping structures has promoted further outbreak of Helicoverpa armigera in China. To control this pest, a combination of pyramiding RNA interference (RNAi) and Cry2Ab is considered a promising strategy for countering cross-resistance and enhancing the toxicity of Cry2Ab to cotton bollworm. We explored the possibility of using calcineurin (CAN) as a target RNAi gene, because it is involved in cotton bollworm responses to the toxicity of Cry2Ab.
Results: Cry2Ab treatment led to a significant increase in HaCAN mRNA level and HaCAN activity. Suppression of HaCAN activity due to RNAi-mediated knockdown of HaCAN increased the susceptibility of midgut cells to Cry2Ab. The increase in HaCAN activity shown by heterologous expression of HaCAN reduced the cytotoxicity of Cry2Ab to Sf9 cells. Moreover, ingestion of HaCAN-specific inhibitor FK506 increased the toxicity of Cry2Ab in larvae. Interestingly, HaCAN does not function as a Cry2Ab direct binding protein that participates in Cry2Ab toxicity.
Conclusions: The results in this study provide evidence that suppression of HaCAN not only affected the development of the cotton bollworm, but also enhanced the toxicity of Cry2Ab to the pest. HaCAN is therefore an important candidate gene in cotton bollworm that can be targeted for pest control when the pest infests RNAi+Cry2Ab crops. Meanwhile, the mechanism of action of HaCAN in Cry2Ab toxicity suggested that protein dephosphorylation was involved. © 2020 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.6243 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!