A major challenge in the assisted reproduction laboratory is to set up reproducible and efficient criteria to identify the embryo with the highest developmental potential. Over the years, several methods have been used worldwide with this purpose. Initially, standard morphology assessment was the only available strategy. It is now universally recognized that besides being a very subjective embryo selection strategy, morphology evaluation alone has a very poor prognostic value. More recently, the availability of time-lapse incubators allowed a continuous monitoring of human embryo development. This technology has spread quickly and many fertility clinics over the world produced a remarkable amount of data. To date, however, a general consensus on which variables, or combination of variables, should play a central role in embryo selection is still lacking. Many confounding factors, concerning both patient features and clinical and biological procedures, have been observed to influence embryo development. In addition, several studies have reported unexpected positive outcomes, even in the presence of abnormal developmental criteria. While it does not seem that time-lapse technology is ready to entirely replace the more invasive preimplantation genetic testing in identifying the embryo with the highest implantation potential, it is certainly true that its application is rapidly growing, becoming progressively more accurate. Studies involving artificial intelligence and deep-learning models as well as combining morphokinetic with other non-invasive markers of embryo development, are currently ongoing, raising hopes for its successful applicability for clinical purpose in the near future. The present review mainly focuses on data published starting from the first decade of 2000, when time-lapse technology was introduced as a routine clinical practice in the infertility centers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7724395PMC
http://dx.doi.org/10.1177/2633494120976921DOI Listing

Publication Analysis

Top Keywords

embryo development
12
embryo highest
8
embryo selection
8
time-lapse technology
8
embryo
7
clinical
4
clinical time-lapse
4
time-lapse human-assisted
4
human-assisted reproduction
4
reproduction major
4

Similar Publications

Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. Identity of specific embryokines that enhance competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate effects of three putative embryokines in cattle on embryonic development to the blastocyst stage.

View Article and Find Full Text PDF

Background: The oocyte retrieval is a critical step in assisted reproductive technologies, including in vitro fertilization and fertility preservation. Despite evolving techniques, the optimal aspiration pressure during retrieval remains debatable, with limited in vivo human studies. Existing studies, primarily in vitro and on animals, suggest that inappropriate aspiration pressures can impair oocyte quality.

View Article and Find Full Text PDF

Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.

View Article and Find Full Text PDF

Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.

View Article and Find Full Text PDF

Increasing variability down serially segmented structures, such as mammalian molar teeth and vertebrate limb segments, is a much-replicated pattern. The same phenotypic pattern has conflicting interpretations at different evolutionary scales. Macroevolutionary patterns are thought to reflect greater evolutionary potential in later-forming segments, but microevolutionary patterns are thought to reflect less evolutionary potential and greater phenotypic plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!