Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723415PMC
http://dx.doi.org/10.7189/jogh.10.0203102DOI Listing

Publication Analysis

Top Keywords

proposal pulse
4
pulse oximetry
4
oximetry omnipresent
4
omnipresent thermometry
4
thermometry public
4
public health
4
health care
4
care systems
4
proposal
1
oximetry
1

Similar Publications

Low-Complexity Timing Correction Methods for Heart Rate Estimation Using Remote Photoplethysmography.

Sensors (Basel)

January 2025

Department of Biomedical and Robotics Engineering, Incheon National University, Incheon 22012, Republic of Korea.

With the rise of modern healthcare monitoring, heart rate (HR) estimation using remote photoplethysmography (rPPG) has gained attention for its non-contact, continuous tracking capabilities. However, most HR estimation methods rely on stable, fixed sampling intervals, while practical image capture often involves irregular frame rates and missing data, leading to inaccuracies in HR measurements. This study addresses these issues by introducing low-complexity timing correction methods, including linear, cubic, and filter interpolation, to improve HR estimation from rPPG signals under conditions of irregular sampling and data loss.

View Article and Find Full Text PDF

Silicon carbide (SiC) metal oxide semiconductor field-effect transistors (MOSFETs) are a future trend in traction inverters in electric vehicles (EVs), and their thermal safety is crucial. Temperature-sensitive electrical parameters' (TSEPs) indirect detection normally requires additional circuits, which can interfere with the system and increase costs, thereby limiting applications. Therefore, there is still a lack of cost-effective and sensorless thermal monitoring techniques.

View Article and Find Full Text PDF

The traditional method is capable of detecting and tracking stationary and slow-moving targets in a sea surface environment. However, the signal focusing capability of such a method could be greatly reduced especially for those variable-speed targets. To solve this problem, a novel tracking algorithm combining range envelope alignment and azimuth phase filtering is proposed.

View Article and Find Full Text PDF

A Deep Learning Approach for Mental Fatigue State Assessment.

Sensors (Basel)

January 2025

Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing 100191, China.

This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.

View Article and Find Full Text PDF

An Improved Speed Sensing Method for Drive Control.

Sensors (Basel)

January 2025

Departamento de Ingeniería Electrónica, Universidad de Sevilla, 41092 Seville, Spain.

Variable-speed electrical drive control typically relies upon a two-loop scheme, one for torque/speed and another for stator current control. In modern drive control methods, the actual mechanical speed is needed for both loops. In practical applications, the speed is often acquired by incremental rotary encoders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!