The aim was to assess the relationships between cardiovascular activity, corneal pulse characteristics, and corneal biomechanics in rabbits. Seventeen rabbits were randomly assigned to one of two anesthetic regimens to induce differences in arterial blood pressure and heart rate. Experimental protocol included measuring blood flow parameters in the ophthalmic artery by color Doppler imaging, corneal biomechanical parameters using a non-contact tonometer Corvis ST, and the corneal pulse (CP) signal using a non-contact ultrasonic technique. Statistically significantly lower mean values of normalized amplitudes of higher CP harmonics and changes in eight of the twelve corneal biomechanical parameters were observed in the rabbit group with lower arterial blood pressure and higher heart rate, intraocular pressure, and resistive index. The results of partial correlations showed that the CP signal energy and amplitude of its first harmonic correlate with the resistive index, diastolic and mean arterial pressures, whereas no statistically significant correlation was found between any of the CP parameters and intraocular pressure. Our pilot study indicates, for the first time, that non-contact and continuous measuring of corneal pulse allows indirectly assessing changes in cardiovascular activity when the confounding effect of intraocular pressure is eliminated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7747746 | PMC |
http://dx.doi.org/10.1038/s41598-020-79219-9 | DOI Listing |
J Leukoc Biol
January 2025
Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA.
Regulated sequential exocytosis of neutrophil granules is essential in orchestrating the innate immune response, while uncontrolled secretion causes inflammation. We developed and characterized Nexinhib20, a small-molecule inhibitor that targets azurophilic granule exocytosis in neutrophils by blocking the interaction between the small GTPase Rab27a and its effector JFC1. Its therapeutic potential has been demonstrated in several pre-clinical models of inflammatory disease.
View Article and Find Full Text PDFCirc Res
January 2025
Division of Cardiovascular Medicine, Department of Medicine (J.B.H., J.D.B., A.C.D.), Vanderbilt University Medical Center, Nashville, TN.
Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Medicine, University of California San Francisco, San Francisco, United States of America.
Hypoxia is a major cause of pulmonary hypertension (PH) worldwide, and it is likely that interstitial pulmonary macrophages contribute to this vascular pathology. We observed in hypoxia-exposed mice an increase in resident interstitial macrophages, which expanded through proliferation and expressed the monocyte recruitment ligand CCL2. We also observed an increase in CCR2+ macrophages through recruitment, which express the protein thrombospondin-1 that functionally activates TGF-beta to cause vascular disease.
View Article and Find Full Text PDFPulmonology
December 2025
Department of Human Movement Sciences, Laboratory of Epidemiology and Human Movement - EPIMOV, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.
Rev Endocr Metab Disord
January 2025
Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA.
Growth hormone (GH)-releasing hormone (GHRH), a hypothalamic peptide initially characterized for its role in GH regulation, has gained increasing attention due to its GH-independent action on peripheral physiology, including that of the cardiovascular system. While its effects on the peripheral vasculature are still under investigation, GHRH and synthetic agonists have exhibited remarkable receptor-mediated cardioprotective properties in preclinical models. GHRH and its analogs enhance myocardial function by improving contractility, reducing oxidative stress, inflammation, and offsetting pathological remodeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!