Chemotherapy for high-grade astrocytic tumors is mainly based on the use of temozolomide (TMZ), whose efficacy is limited by resistance mechanisms. Despite many investigations pointing to O6-methylguanine-DNA-methyltransferase (MGMT) as being responsible for tumor chemo-resistance, its expression does not predict an accurate response in most gliomas, suggesting that MGMT is not the only determinant of response to treatment. In this sense, several reports indicate that N-methylpurine-DNA-glycosylase (MPG) may be involved in that resistance. With that in mind, we evaluated for the first time the degree of resistance to TMZ treatment in 18 patient-derived glioma cells and its association with MGMT and MPG mRNA levels. Viability cell assays showed that TMZ treatment hardly caused growth inhibition in the patient-derived cells, even in high concentrations, indicating that all primary cultures were chemo-resistant. mRNA expression analyses showed that the TMZ-resistant phenotype displayed by cells is associated with an elevated expression of MPG to a greater extent than it is with transcript levels of MGMT. Our findings suggest that not only is MGMT implicated in resistance to TMZ but MPG, the first enzyme in base excision repair processing, is also involved, supporting its potential role as a target in anti-resistance chemotherapy for astrocytoma and glioblastoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7747563PMC
http://dx.doi.org/10.1038/s41598-020-78868-0DOI Listing

Publication Analysis

Top Keywords

patient-derived glioma
8
glioma cells
8
resistance tmz
8
tmz treatment
8
resistance
5
mgmt
5
involvement n-methylpurine
4
n-methylpurine dna
4
dna glycosylase
4
glycosylase resistance
4

Similar Publications

(1) Background: Hepatoblastoma and medulloblastoma are two types of pediatric tumors with embryonic origins. Both tumor types can exhibit genetic alterations that affect the β-catenin and Wnt pathways; (2) Materials and Methods: This study used bioinformatics and integrative analysis of multi-omics data at both the tumor and single-cell levels to investigate two distinct pediatric tumors: medulloblastoma and hepatoblastoma; (3) Results: The cross-transcriptome analysis revealed a commonly regulated expression signature between hepatoblastoma and medulloblastoma tumors. Among the commonly upregulated genes, the transcription factor LEF1 was significantly expressed in both tumor types.

View Article and Find Full Text PDF

Background: The wide variability in clinical responses to anti-tumor immunotherapy drives the search for personalized strategies. One of the promising approaches is drug screening using patient-derived models composed of tumor and immune cells. In this regard, the selection of an appropriate in vitro model and the choice of cellular response assay are critical for reliable predictions.

View Article and Find Full Text PDF

Attempts to activate an anti-tumor immune response in glioblastoma (GBM) have been met with many challenges due to its inherently immunosuppressive tumor microenvironment. The degree and mechanisms by which molecularly and phenotypically diverse tumor-propagating glioma stem cells (GSCs) contribute to this state are poorly defined. In this study, our multifaceted approach combining bioinformatics analyses of clinical and experimental datasets, single-cell sequencing, and molecular and pharmacologic manipulation of patient-derived cells identified GSCs expressing immunosuppressive effectors mimicking regulatory T cells (Tregs).

View Article and Find Full Text PDF

Histone mutations (H3 K27M, H3 G34R/V) are molecular features defining subtypes of paediatric-type diffuse high-grade gliomas (HGG) (diffuse midline glioma (DMG), H3 K27-altered, diffuse hemispheric glioma (DHG), H3 G34-mutant). The WHO classification recognises in exceptional cases, these mutations co-occur. We report one such case of a 2-year-old female presenting with neurological symptoms; MRI imaging identified a brainstem lesion which was biopsied.

View Article and Find Full Text PDF

The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!