Impact of environmental factors on the sampling rate of β-blockers and sulfonamides from water by a carbon nanotube-passive sampler.

J Environ Sci (China)

Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, Gdansk 80-308, Poland.

Published: March 2021

Passive techniques are a constantly evolving approach to the long-term monitoring of micropollutants, including pharmaceuticals, in the aquatic environment. This paper presents, for the first time, the calibration results of a new CNTs-PSDs (carbon nanotubes used as a sorbent in passive sampling devices) with an examination of the effect of donor phase salinity, water pH and the concentration of dissolved humic acids (DHAs), using both ultrapure and environmental waters. Sampling rates (R) were determined for the developed kinetic samplers. It has been observed that the impact of the examined environmental factors on the R values strictly depends on the type of the analytes. In the case of β-blockers, the only environmental parameter affecting their uptake rate was the salinity of water. A certain relationship was noted, namely the higher the salt concentration in water, the lower the R values of β-blockers. In the case of sulfonamides, water salinity, water pH 7-9 and DHAs concentration decreased the uptake rate of these compounds by CNTs-PSDs. The determined R values differed in particular when the values obtained from the experiments carried out using ultrapure water and environmental waters were compared. The general conclusion is that the calibration of novel CNTs-PSDs should be carried out under physicochemical conditions of the aquatic phase that are similar to the environmental matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2020.08.034DOI Listing

Publication Analysis

Top Keywords

salinity water
12
environmental factors
8
sulfonamides water
8
environmental waters
8
uptake rate
8
water
7
environmental
5
impact environmental
4
factors sampling
4
sampling rate
4

Similar Publications

Hydrogeochemical characterization of shallow and deep groundwater for drinking and irrigation water quality index of Kathmandu Valley, Nepal.

Environ Geochem Health

January 2025

Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal.

A comprehensive hydrogeochemical analysis of 156 groundwater samples (106 shallow and 50 deep) was conducted in the Kathmandu Valley, Nepal. This study addresses a significant research gap by focusing on the hydro-geochemical composition and contamination of groundwater in the Kathmandu Valley, an area with limited detailed assessments. The novelty of this work lies in its comprehensive analysis of both shallow and deep groundwater, particularly concerning the high concentration of contaminants like arsenic, microbial pathogens, and ammonium, which are critical for public health.

View Article and Find Full Text PDF

Microbial fuel cell (MFC) technology has received increased interest as a suitable approach for treating wastewater while producing electricity. However, there remains a lack of studies investigating the impact of inoculum type and hydraulic retention time (HRT) on the efficiency of MFCs in treating industrial saline wastewater. The effect of three different inocula (activated sludge from a fish-canning industry and two domestic wastewater treatment plants, WWTPs) on electrochemical and physicochemical parameters and the anodic microbiome of a two-chambered continuous-flow MFC was studied.

View Article and Find Full Text PDF

Biostimulants stimulate plant growth and tolerance to salinity stress, which creates unfavorable conditions for plant growth from emergence to harvest; however, little is known about their roles in triggering salt tolerance. Therefore, the study aimed to determine how applying a foliar plant-derived biostimulant (Aminolom Enzimatico® 24%) affects the growth (leaf area, biomass weight, root diameter, root fresh weight, and water-soluble dry matter), physiology (chlorophyll content, electrolyte leakage, cell membrane stability, and relative water content), and stomata of the lower and upper parts of leaves in radish plants ( L.) under salinity stress.

View Article and Find Full Text PDF

How short-term change in temperature or salinity affect cellular immune parameters of three-spined stickleback, Gasterosteus aculeatus?

Mar Environ Res

January 2025

Institut national de l'environnement industriel et des risques, Université de Reims Champagne-Ardenne, Université Le Havre Normandie, Normandie Univ, UMR-I 02 SEBIO, 60550, Verneuil-en-Halatte, France.

Reference values for the non-specific immune response of stickleback have been developed to better understand the natural variability of the immunomarkers and to increase their relevance for the detection of environmental perturbations. However, under field conditions, temperature and salinity can vary from station to station and their influence on the reference ranges of the immunomarkers should therefore be quantified. To this end, adult sticklebacks were exposed either to different temperatures (from 12 to 18 °C) or to different salinities (from 0 to 30 g/L) for 21 days after 10 days of acclimatization.

View Article and Find Full Text PDF

Phytoplankton are diverse photosynthetic organisms in estuarine ecosystems and sensitive indicators of environmental changes. This study employed Generalized Additive Model (GAM) to explore the impact of environmental variables on the abundance of six dominant phytoplankton species in the tropical Karanja estuary, India. Data were collected from five sampling stations between January 2022 and March 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!