The organic-inorganic hybrid halide compounds have emerged as one of the most promising photoelectric material for their superior optoelectronic properties and hold great prospects for renewable energy substitutes and environmental protection as photocatalysis. Here, we report the optical properties of the Sb-based organic-inorganic hybrid ferroelectric materials: pyridine-4-aminium tetrachloroantimonate ((CHN)SbCl, sample 1), piperidin-1-aminium tetrachloroantimonate ((CHN)SbCl, sample 2) and tris(trimethylammonium) nonachlorodiantimonate (((CH)NH)SbCl, sample 3), which are a kind of exploited efficient photocatalysts. Samples 2 and 3 exhibit distinct photoelectric respond, which are mainly ascribed to their minor narrow band-gap compared with sample 1. For the ferroelectrics, the intrinsic of spontaneous polarization of sample 3 at room temperature is favourable for the separation of photogenerated electrons and holes within the photorespond process. Moreover, sample 3 shows the highest efficiency of photo-decomposed Rhodamine B (90.2% within 80 min) and Methyl Orange (MO) (97.4% within 50 min), thanks to the photo-excited electrons and holes promoting the formation of oxidative radical species during the photo-redox progress. These findings prove that the development of a novel Sb-based organic-inorganic hybrid halide compounds with good stability in the degradation of organic dyes paves a way to designing new photocatalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2020.08.014 | DOI Listing |
Chem Rev
December 2024
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China.
Core-shell magnetic particles consisting of magnetic core and functional shells have aroused widespread attention in multidisciplinary fields spanning chemistry, materials science, physics, biomedicine, and bioengineering due to their distinctive magnetic properties, tunable interface features, and elaborately designed compositions. In recent decades, various surface engineering strategies have been developed to endow them desired properties (e.g.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, 70111 Szczecin, Poland.
Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.
View Article and Find Full Text PDFChem Asian J
December 2024
Birla Institute of Technology & Science Pilani - Hyderabad Campus, Chemistry department, Shameerpet, 500078, Hyderabad, INDIA.
The incorporation of photoactive organic dyes into layered inorganic materials enhances their optical and chemical properties, making them ideal for sensing applications. In this study, Bisindolyl methane (BIM)-based neutral probes were integrated with bentonite clay to explore their sensing capabilities. Probe 1 (unoxidized BIM) and Probe 2 (oxidized BIM) generally exhibited quenched luminescence in solution due to intramolecular rotations.
View Article and Find Full Text PDFDiscov Nano
December 2024
Department of Instrumentation and Control Engineering, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, 144008, India.
In vivo, molecular imaging is prevalent for biology research and therapeutic practice. Among advanced imaging technologies, photoacoustic (PA) imaging and sensing is gaining interest around the globe due its exciting features like high resolution and good (~ few cm) penetration depth. PA imaging is a recent development in ultrasonic technology that generates acoustic waves by absorbing optical energy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Group of Characterization of Materials, Departament de Física, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, Barcelona 08019, Spain.
Hybrid organic-inorganic perovskites (HOIP) have emerged in recent years as highly promising semiconducting materials for a wide range of optoelectronic and energy applications. Nevertheless, the rotational dynamics of the organic components and many-molecule interdependencies, which may strongly impact the functional properties of HOIP, are not yet fully understood. In this study, we quantitatively analyze the orientational disorder and molecular correlations in archetypal perovskite CHNHPbI (MAPI) by performing comprehensive molecular dynamics simulations and entropy calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!