A conceptual framework to understand the role of built environment on traffic safety.

J Safety Res

Department of Urban and Regional Planning, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades road, SO 284, Boca Raton, FL 33431, United states. Electronic address:

Published: December 2020

Introduction: Many U.S. cities have adopted the Vision Zero strategy with the specific goal of eliminating traffic-related deaths and injuries. To achieve this ambitious goal, safety professionals have increasingly called for the development of a safe systems approach to traffic safety. This approach calls for examining the macrolevel risk factors that may lead road users to engage in errors that result in crashes. This study explores the relationship between built environment variables and crash frequency, paying specific attention to the environmental mediating factors, such as traffic exposure, traffic conflicts, and network-level speed characteristics.

Methods: Three years (2011-2013) of crash data from Mecklenburg County, North Carolina, were used to model crash frequency on surface streets as a function of built environment variables at the census block group level. Separate models were developed for total and KAB crashes (i.e., crashes resulting in fatalities (K), incapacitating injuries (A), or non-incapacitating injuries (B)) using the conditional autoregressive modeling approach to account for unobserved heterogeneity and spatial autocorrelation present in data.

Results: Built environment variables that are found to have positive associations with both total and KAB crash frequencies include population, vehicle miles traveled, big box stores, intersections, and bus stops. On the other hand, the number of total and KAB crashes tend to be lower in census block groups with a higher proportion of two-lane roads and a higher proportion of roads with posted speed limits of 35 mph or less.

Conclusions: This study demonstrates the plausible mechanism of how the built environment influences traffic safety. The variables found to be significant are all policy-relevant variables that can be manipulated to improve traffic safety. Practical Applications: The study findings will shape transportation planning and policy level decisions in designing the built environment for safer travels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsr.2020.07.004DOI Listing

Publication Analysis

Top Keywords

built environment
24
traffic safety
16
environment variables
12
total kab
12
crash frequency
8
census block
8
kab crashes
8
higher proportion
8
built
6
environment
6

Similar Publications

Background: Machine learning (ML) is increasingly used to predict clinical deterioration in intensive care unit (ICU) patients through scoring systems. Although promising, such algorithms often overfit their training cohort and perform worse at new hospitals. Thus, external validation is a critical - but frequently overlooked - step to establish the reliability of predicted risk scores to translate them into clinical practice.

View Article and Find Full Text PDF

Tracing ancient solar cycles with tree rings and radiocarbon in the first millennium BCE.

Nat Commun

January 2025

Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern Weg 5 HPK, 8093, Zurich, Switzerland.

The Sun drives Earth's energy systems, influencing weather, ocean currents, and agricultural productivity. Understanding solar variability is critical, but direct observations are limited to 400 years of sunspot records. To extend this timeline, cosmic ray-produced radionuclides like C in tree-rings provide invaluable insights.

View Article and Find Full Text PDF

Ancient texts and archaeological evidence indicate substantial lead exposure during antiquity that potentially impacted human health. Although lead exposure routes were many and included the use of glazed tablewares, paints, cosmetics, and even intentional ingestion, the most significant for the nonelite, rural majority of the population may have been through background air pollution from mining and smelting of silver and lead ores that underpinned the Roman economy. Here, we determined potential health effects of this air pollution using Arctic ice core measurements of Roman-era lead pollution, atmospheric modeling, and modern epidemiology-based relationships between air concentrations, blood lead levels (BLLs), and cognitive decline.

View Article and Find Full Text PDF

High organofluorine concentrations in municipal wastewater affect downstream drinking water supplies for millions of Americans.

Proc Natl Acad Sci U S A

January 2025

Environmental Science & Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134.

Wastewater receives per- and polyfluoroalkyl substances (PFAS) from diverse consumer and industrial sources, and discharges are known to be a concern for drinking water quality. The PFAS family includes thousands of potential chemical structures containing organofluorine moieties. Exposures to a few well-studied PFAS, mainly perfluoroalkyl acids (PFAA), have been associated with increased risk of many adverse health outcomes, prompting federal drinking water regulations for six compounds in 2024.

View Article and Find Full Text PDF

The SARS-CoV-2 virus caused the COVID-19 pandemic and brought major challenges to public health. It is transmitted via aerosols, droplets, and fomites. Among these, viral transmission through fomites is not well understood although it remains a very important transmission route.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!