AI Article Synopsis

  • - Several therapies are being developed to improve blood flow in tissues lacking oxygen, with menstrual blood-derived mesenchymal stromal cells (mbMSC) emerging as a promising and less invasive source compared to bone marrow-derived cells (bmMSC).
  • - In various tests, mbMSC showed superior performance, such as greater invasion and longer sprouts in lab cultures, and unlike bmMSC, mbMSC successfully integrated into chick embryos, indicating strong potential for vascular growth.
  • - Both mbMSC and bmMSC released factors that encouraged blood vessel formation, with mbMSC additionally expressing PDGF-B, a key molecule for developing and remodeling blood vessels, making it a more advantageous option for future therapies.

Article Abstract

Several therapies are being developed to increase blood circulation in ischemic tissues. Despite bone marrow-derived mesenchymal stromal cells (bmMSC) are still the most studied, an interesting and less invasive MSC source is the menstrual blood, which has shown great angiogenic capabilities. Therefore, the aim of this study was to evaluate the angiogenic properties of menstrual blood-derived mesenchymal stromal cells (mbMSC) in vitro and in vivo and compared to bmMSC. MSC's intrinsic angiogenic capacity was assessed by sprouting and migration assays. mbMSC presented higher invasion and longer sprouts in 3D culture. Additionally, both MSC-spheroids showed cells expressing CD31. mbMSC and bmMSC were able to migrate after scratch wound in vitro, nonetheless, only mbMSC demonstrated ability to engraft in the chick embryo, migrating to perivascular, perineural, and chondrogenic regions. In order to study the paracrine effects, mbMSC and bmMSC conditioned mediums were capable of stimulating HUVEC's tube-like formation and migration. Both cells expressed VEGF-A and FGF2. Meanwhile, PDGF-B was expressed exclusively in mbMSC. Our results indicated that mbMSC and bmMSC presented a promising angiogenic potential. However, mbMSC seems to have additional advantages since it can be obtained by non-invasive procedure and expresses PDGF-B, an important molecule for vascular formation and remodeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765504PMC
http://dx.doi.org/10.3390/ijms21249563DOI Listing

Publication Analysis

Top Keywords

mesenchymal stromal
12
stromal cells
12
mbmsc bmmsc
12
intrinsic angiogenic
8
angiogenic potential
8
menstrual blood
8
mbmsc
8
cells
5
bmmsc
5
potential migration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!