A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Regulatory Role of Silicon in Mitigating Plant Nutritional Stresses. | LitMetric

The Regulatory Role of Silicon in Mitigating Plant Nutritional Stresses.

Plants (Basel)

Centre Mondial de l'Innovation Roullier, Laboratoire de Nutrition Végétale, Pôle Stress Abiotiques, 18 avenue Franklin Roosevelt, 35400 Saint-Malo, France.

Published: December 2020

It has been long recognized that silicon (Si) plays important roles in plant productivity by improving mineral nutrition deficiencies. Despite the fact that Si is considered as 'quasi-essential', the positive effect of Si has mostly been described in resistance to biotic and tolerance to abiotic stresses. During the last decade, much effort has been aimed at linking the positive effects of Si under nutrient deficiency or heavy metal toxicity (HM). These studies highlight the positive effect of Si on biomass production, by maintaining photosynthetic machinery, decreasing transpiration rate and stomatal conductance, and regulating uptake and root to shoot translocation of nutrients as well as reducing oxidative stress. The mechanisms of these inputs and the processes driving the alterations in plant adaptation to nutritional stress are, however, largely unknown. In this review, we focus on the interaction of Si and macronutrient (MaN) deficiencies or micro-nutrient (MiN) deficiency, summarizing the current knowledge in numerous research fields that can improve our understanding of the mechanisms underpinning this cross-talk. To this end, we discuss the gap in Si nutrition and propose a working model to explain the responses of individual MaN or MiN disorders and their mutual responses to Si supplementation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765459PMC
http://dx.doi.org/10.3390/plants9121779DOI Listing

Publication Analysis

Top Keywords

regulatory role
4
role silicon
4
silicon mitigating
4
mitigating plant
4
plant nutritional
4
nutritional stresses
4
stresses long
4
long recognized
4
recognized silicon
4
silicon plays
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!