Pregnancy induces unique changes in maternal immune responses and metabolism. Drastic physiologic adaptations, in an intricately coordinated fashion, allow the maternal body to support the healthy growth of the fetus. The gut microbiome plays a central role in the regulation of the immune system, metabolism, and resistance to infections. Studies have reported changes in the maternal microbiome in the gut, vagina, and oral cavity during pregnancy; it remains unclear whether/how these changes might be related to maternal immune responses, metabolism, and susceptibility to infections during pregnancy. Our understanding of the concerted adaption of these different aspects of the human physiology to promote a successful pregnant remains limited. Here, we provide a comprehensive documentation and discussion of changes in the maternal microbiome in the gut, oral cavity, and vagina during pregnancy, metabolic changes and complications in the mother and newborn that may be, in part, driven by maternal gut dysbiosis, and, lastly, common infections in pregnancy. This review aims to shed light on how dysregulation of the maternal microbiome may underlie obstetrical metabolic complications and infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765218 | PMC |
http://dx.doi.org/10.3390/microorganisms8121996 | DOI Listing |
Commun Med (Lond)
December 2024
Inserm UMRS 1256 NGERE, University of Lorraine, Nancy, France.
Background: Early-life exposures including diet, and the gut microbiome have been proposed to predispose infants towards multifactorial diseases later in life. Delivery via Cesarian section disrupts the establishment of the gut microbiome and has been associated with negative long-term outcomes. Here, we hypothesize that Cesarian section delivery alters not only the composition of the developing infant gut microbiome but also its metabolic capabilities.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Neonatology Department, Affiliated Shenzhen Children's Hospital of Shantou University Medical College, Shenzhen, China.
Background: Women with vulvovaginal candidiasis (VVC) are known to experience vaginal microbial dysbiosis. However, the dynamic alterations of the vaginal microbiome in pregnant women with VVC and its effect on neonatal gut microbiome remain unclear. This study aims to characterize the vaginal microbiome in pregnant women with VVC and its impact on their offspring's meconium microbiome.
View Article and Find Full Text PDFLin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
January 2025
To explore the hypothesis of "pathogen storage pool" by analyzing the local microbial community of adenoids. Under the guidance of a 70° nasal endoscope, sterile swabs were used to collect secretions from the adenoid crypts of the subjects. The samples were sent to the laboratory for DNA extraction and standard bacterial 16S full-length sequencing analysis.
View Article and Find Full Text PDFVet Sci
November 2024
Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea.
This study aimed to evaluate rotavirus transmission to calves and analyze microbial communities in cow milk and neonatal calf feces within dairy and beef cattle. A total of 20 cattle, Hanwoo ( = 10), and Holstein ( = 10) were allotted for the study, with each breed comprising five cows and five calves. Colostrum samples were obtained from the dam, while feces were obtained from both the dam and calf.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!