Recent Advances in the Development of Protein- and Peptide-Based Subunit Vaccines against Tuberculosis.

Cells

MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.

Published: December 2020

The World Health Organization (WHO) herald of the "End TB Strategy" has defined goals and targets for tuberculosis prevention, care, and control to end the global tuberculosis endemic. The emergence of drug resistance and the relative dreadful consequences in treatment outcome has led to increased awareness on immunization against (). However, the proven limited efficacy of Bacillus Calmette-Guérin (BCG), the only licensed vaccine against , has highlighted the need for alternative vaccines. In this review, we seek to give an overview of infection and failure of BCG to control it. Afterward, we focus on the protein- and peptide-based subunit vaccine subtype, examining the advantages and drawbacks of using this design approach. Finally, we explore the features of subunit vaccine candidates currently in pre-clinical and clinical evaluation, including the antigen repertoire, the exploited adjuvanted delivery systems, as well as the spawned immune response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765234PMC
http://dx.doi.org/10.3390/cells9122673DOI Listing

Publication Analysis

Top Keywords

protein- peptide-based
8
peptide-based subunit
8
subunit vaccine
8
advances development
4
development protein-
4
subunit vaccines
4
vaccines tuberculosis
4
tuberculosis health
4
health organization
4
organization herald
4

Similar Publications

Peptide-based nanomaterials can be easily functionalized due to their functional groups, as well as being biocompatible, stable under physiological conditions, and nontoxic. Here, diphenylalanineamide-based nanomaterials (FFANMs) were synthesized, decorated with Ca ions to set the surface charge, and characterized for possible use in gene delivery and drug release studies. FFANMs were characterized by SEM, TEM, dynamic light scattering (DLS), and LC-MS/MS.

View Article and Find Full Text PDF

Tetrodotoxin (TTX), a potent Site-1 sodium channel blocker (S1SCB), offers highly effective local anesthetic properties with minimal addiction potential. To fully leverage TTX's capabilities as a local anesthetic, it is crucial to develop a drug delivery system that balances its systemic toxicity with its therapeutic efficacy. Recent studies have shown that peptide mixtures, derived from fragments of Site-1 sodium channel proteins and enhanced with hydrophobic tails (designated MP1 and MP2), can self-assemble into nanostructures that exhibit remarkable sustained-release capabilities for TTX.

View Article and Find Full Text PDF

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

Conquering surface fouling of sensors caused by nonspecific adsorption and accumulation of foulants in a food matrix is of significance in accurate food safety analysis. Herein, an antifouling electrochemical aptasensor based on a Y-shaped peptide and nanoporous gold (NPG) for aflatoxin B1 detection in milk, tofu, and rice flour was proposed. The self-designed Y-shaped peptide involves an anchoring segment (-C), a support structure (-PPPP-), and an antifouling domain with two branches (-EK(KSRE)DER-) inspired by two bioactive peptides.

View Article and Find Full Text PDF

Synthetic peptide scaffolds as ion channels and molecular carriers.

Curr Opin Chem Biol

January 2025

Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain. Electronic address:

Transmembrane ion exchange controls biological functions and is essential for life. Over the years, a great variety of nature-inspired artificial ion channels and carriers have been synthesized to control and promote ion exchange across biological membranes. In this context, peptides emerged as ideal scaffolds for synthetic ion channels due to their biocompatibility, accessibility and chemical versatility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!