Protein complexes play important roles in most cellular processes. The available genome-wide protein-protein interaction (PPI) data make it possible for computational methods identifying protein complexes from PPI networks. However, PPI datasets usually contain a large ratio of false positive noise. Moreover, different types of biomolecules in a living cell cooperate to form a union interaction network. Because previous computational methods focus only on PPIs ignoring other types of biomolecule interactions, their predicted protein complexes often contain many false positive proteins. In this study, we develop a novel computational method idenPC-CAP to identify protein complexes from the RNA-protein heterogeneous interaction network consisting of RNA-RNA interactions, RNA-protein interactions and PPIs. By considering interactions among proteins and RNAs, the new method reduces the ratio of false positive proteins in predicted protein complexes. The experimental results demonstrate that idenPC-CAP outperforms the other state-of-the-art methods in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbaa372DOI Listing

Publication Analysis

Top Keywords

protein complexes
24
false positive
12
idenpc-cap identify
8
identify protein
8
rna-protein heterogeneous
8
heterogeneous interaction
8
computational methods
8
ratio false
8
interaction network
8
predicted protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!