Cobalt (Co) and copper (Cu) co-exist commonly in the contaminated soils and at excessive levels, they are toxic to plants. However, their joint effect and possible interaction have not been fully addressed. In this work, a hydroponic experiment was performed to investigate the combined effects of Co and Cu on two barley genotypes at transcriptional level by RNA-seq analysis. The results identified 358 genes inclusively expressed in both genotypes under single and combined treatments of Co and Cu, with most of them being related to metal transport, stress response and transcription factor. The combined treatment induced more differently expressed genes (DEGs) than the single treatment, with Yan66, a metal tolerant genotype having more DEGs than Ea52, a sensitive genotype. The pathways associated with anthocyanin biosynthesis, MAPK signaling, glutathione biosynthesis, phenylalanine metabolism, photosynthesis, arginin biosynthesis, fatty acid elongation, and plant hormone signal transduction biosynthesis were induced and inhibited in Yan66 and Ea52, respectively. Furthermore, flavonoid biosynthesis was much more largely enhanced and accordingly more free flavonoid components (naringin, narirutin and neohesperidin) were accumulated in Yan66 than in Ea52. It may be suggested that high tolerance to both Co and Cu in Yan66 is attributed to its high gene regulatory ability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.111761DOI Listing

Publication Analysis

Top Keywords

cobalt copper
8
yan66 ea52
8
biosynthesis
5
transcriptome analysis
4
analysis reveals
4
reveals tolerant
4
tolerant mechanisms
4
mechanisms cobalt
4
copper barley
4
barley cobalt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!