A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exosome-mediated improvement in membrane integrity and muscle function in dystrophic mice. | LitMetric

Exosome-mediated improvement in membrane integrity and muscle function in dystrophic mice.

Mol Ther

Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China; School of Medical Laboratory, Tianjin Medical University, Guangdong Road, Tianjin 300203, China; Department of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, China. Electronic address:

Published: April 2021

Duchenne muscular dystrophy (DMD) is a devastating genetic disorder that leads to compromised cellular membranes, caused by the absence of membrane-bound dystrophin protein. Muscle membrane leakage results in disrupted intracellular homeostasis, protein degradation, and muscle wasting. Improving muscle membrane integrity may delay disease progression and extend the lifespan of DMD patients. Here, we demonstrate that exosomes, membranous extracellular vesicles, can elicit functional improvements in dystrophic mice by improving muscle membrane integrity. Systemic administration of exosomes from different sources induced phenotypic rescue and mitigated pathological progression in dystrophic mice without detectable toxicity. Improved membrane integrity conferred by exosomes inhibited intracellular calcium influx and calcium-dependent activation of calpain proteases, preventing the degradation of the destabilized dystrophin-associated protein complex. We show that exosomes, particularly myotube-derived exosomes, induced functional improvements and alleviated muscle deterioration by stabilizing damaged muscle membrane in dystrophic mice. Our findings suggest that exosomes may have therapeutic implications for DMD and other diseases with compromised membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058444PMC
http://dx.doi.org/10.1016/j.ymthe.2020.12.018DOI Listing

Publication Analysis

Top Keywords

membrane integrity
16
dystrophic mice
16
muscle membrane
16
improving muscle
8
functional improvements
8
muscle
7
membrane
6
exosomes
6
exosome-mediated improvement
4
improvement membrane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!