Understanding the epigenetic landscape and cellular architecture of childhood brain tumors.

Neurochem Int

Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA. Electronic address:

Published: March 2021

Pediatric brain tumors are the leading cancer-related cause of death in children and adolescents in the United States, affecting on average 1 in 2000 children per year. Recent advances in cancer genomics have led to profound discoveries about the underlying molecular biology and ontogeny of these tumors. In particular, these studies have revealed epigenetic dysregulation to be one of the main hallmarks of pediatric brain tumorigenesis. In this review, we will highlight a number of important recent findings about the nature of this dysregulation in different types of pediatric brain tumors as well as examine their implications for preclinical research and clinical practice. Specifically, we discuss the emergence of methylation signatures as tools for tumor stratification/classification while also highlighting the importance of mutations that directly affect the epigenome and clarifying their impact on risk stratification and pediatric brain tumor biology. We then incorporate recent advances in our understanding of pediatric brain tumor cellular architecture and emphasize the link between epigenetic dysregulation and the "stalled" development seen in many of these malignant neoplasms. Lastly, we explore recentwork investigating the use of these mutated epigenomic regulators as therapeutic targets and extrapolate their utility in overcoming this "stalling" to halt tumor growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2020.104940DOI Listing

Publication Analysis

Top Keywords

pediatric brain
20
brain tumors
12
cellular architecture
8
epigenetic dysregulation
8
brain tumor
8
brain
6
pediatric
5
understanding epigenetic
4
epigenetic landscape
4
landscape cellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!