Effects of drying method and excipient on the structure and physical stability of protein solids: Freeze drying vs. spray freeze drying.

Int J Pharm

Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA. Electronic address:

Published: February 2021

This study aims to determine the impacts of drying method and excipient on changes in protein structure and physical stability of model protein solids. Protein solids containing one of two model proteins (lysozyme or myoglobin) were produced with or without excipients (sucrose or mannitol) using freeze drying or spray freeze drying (SFD). The protein powders were then characterized using solid-state Fourier transform infrared spectroscopy (ssFTIR), differential scanning calorimetry (DSC), circular dichroism spectrometry (CD), size exclusion chromatography (SEC), BET surface area measurements and solid-state hydrogen deuterium exchange with mass spectrometry (ssHDX-MS). ssFTIR and CD could identify little to no difference in structure of the proteins in the formulation. ssHDX-MS was able to identify the population heterogeneity, which was undetectable by conventional characterization techniques of ssFTIR and CD. ssHDX-MS metrics such as D and peak area showed a good correlation with the protein physical instability (loss of the monomeric peak area by size exclusion chromatography) in 90-day stability studies conducted at 40 °C for lysozyme. Higher specific surface area was associated with greater loss in monomer content for myoglobin-mannitol formulations as compared to myoglobin-only formulations. Spray freeze drying seems a viable manufacturing technique for protein solids with appropriate optimization of formulations. The differences observed within the formulations and between the processes using ssHDX-MS, BET surface area measurements and SEC in this study provide an insight into the influence of drying methods and excipients on protein physical stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856218PMC
http://dx.doi.org/10.1016/j.ijpharm.2020.120169DOI Listing

Publication Analysis

Top Keywords

freeze drying
20
protein solids
16
physical stability
12
spray freeze
12
surface area
12
drying method
8
method excipient
8
structure physical
8
protein
8
drying spray
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!