Despite the established dichotomy between investment in either reproduction or self-maintenance, a hormonal mechanism that influences an organism's decision to prioritize these behaviors remains elusive. The protein hormone leptin is a likely candidate because it is secreted from adipocytes in proportion to the amount of stored fat in numerous species. Although the majority of studies suggest that leptin stimulates reproduction, the actions of leptin can be context-dependent. Leptin increases sexual behavior in fed individuals, but inhibits sexual behavior in food-restricted individuals. We investigated if exogenous leptin influences sexual behavior in red-sided garter snakes (Thamnophis sirtalis parietalis) experiencing a predictable bout of aphagia during the mating season. We tested two doses of recombinant murine leptin injected for three days. Males were subjected to three mating trials, one on each day of injections, while females were subjected to one mating trial on the last day of injections. Leptin affects male and female snakes similarly by increasing both appetitive (i.e., mating behavior score) and consummatory (i.e., number of copulations, proportion of individuals copulated) sex behavior. We found no evidence to suggest that leptin influenced latency to copulate or duration of copulation. Because leptin promotes reproductive behavior in non-feeding garter snakes, these findings do not align with research on food-restricted mammals. Further investigations into how leptin affects sexual behavior in snakes exposed to food-restriction manipulations would clarify if the role of leptin is evolutionarily divergent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yhbeh.2020.104893DOI Listing

Publication Analysis

Top Keywords

sexual behavior
16
garter snakes
12
leptin
11
exogenous leptin
8
leptin promotes
8
promotes reproductive
8
behavior
8
reproductive behavior
8
red-sided garter
8
snakes thamnophis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!