Fates of Antibiotic Resistance Genes in the Gut Microbiome from Different Soil Fauna under Long-Term Fertilization.

Environ Sci Technol

Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.

Published: January 2021

AI Article Synopsis

  • Applying organic fertilizers can increase the spread of antibiotic resistance genes (ARGs) in soil, but the influence of soil organisms has not been fully explored.
  • The study utilized high-throughput quantitative polymerase chain reaction (HT-qPCR) to analyze how different fertilization treatments over 5 to 10 years affect the transfer of ARGs between soil, nematodes, and earthworms.
  • Results showed that nematodes had higher levels of ARGs than earthworms, and longer fertilization durations decreased ARG transfer, particularly by affecting the gut microbiota of earthworms, which suggests a complex food chain interaction in the dissemination of ARGs.

Article Abstract

Applying organic fertilizers has been well documented to facilitate the dissemination of antibiotic resistance genes (ARGs) in soil ecosystems. However, the role of soil fauna in this process has been seldom addressed, which hampers our ability to predict the fate of and to manage the spread of ARGs. Here, using high-throughput quantitative polymerase chain reaction (HT-qPCR), we examined the effect of long-term (5-, 8-, and 10-year) fertilization treatments (control, inorganic fertilizers, and mixed fertilizers) on the transfer of ARGs between soil, nematodes, and earthworms. We found distinct fates for ARGs in the nematodes and earthworms, with the former having higher enriched levels of ARGs than the latter. Fertilization impacted the number and abundance of ARGs in soil, and fertilization duration altered the composition of ARGs. Shared ARGs among soil, nematodes, and earthworm guts supported by a fast expectation-maximization microbial source tracking analysis demonstrated the trophic transfer potential of ARGs through this short soil food chain. The transfer of ARGs was reduced by fertilization duration, which was mainly ascribed to the reduction of ARGs in the earthworm gut microbiota. This study identified the transfer of ARGs in the soil-nematode-earthworm food chain as a potential mechanism for a wider dissemination of ARGs in the soil ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c03893DOI Listing

Publication Analysis

Top Keywords

args soil
20
args
13
transfer args
12
antibiotic resistance
8
resistance genes
8
soil
8
soil fauna
8
soil nematodes
8
nematodes earthworms
8
fertilization duration
8

Similar Publications

Portable microfluidic devices for monitoring antibiotic resistance genes in wastewater.

Mikrochim Acta

December 2024

School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.

Antibiotic resistance genes (ARGs) pose serious threats to environmental and public health, and monitoring ARGs in wastewater is a growing need because wastewater is an important source. Microfluidic devices can integrate basic functional units involved in sample assays on a small chip, through the precise control and manipulation of micro/nanofluids in micro/nanoscale spaces, demonstrating the great potential of ARGs detection in wastewater. Here, we (1) summarize the state of the art in microfluidics for recognizing ARGs, (2) determine the strengths and weaknesses of portable microfluidic chips, and (3) assess the potential of portable microfluidic chips to detect ARGs in wastewater.

View Article and Find Full Text PDF

The broader soil bacterial community responses at ecotoxicologically relevant levels of nano ZnO (nZnO) focussing on co-selection of antibiotic resistance (AR) were investigated. nZnO imposed a stronger influence than the bulk counterpart (bZnO) on antibiotic resistance genes (ARGs) with multidrug resistance (MDR) systems being predominant (63 % of total ARGs). Proliferation of biomarker ARGs especially for last resort antibiotic like vancomycin was observed and Streptomyces hosted multiple ARGs.

View Article and Find Full Text PDF

Biogeographic distribution of prokaryotic and eukaryotic communities has been extensively studied. Yet, our knowledge of viral biogeographic patterns, the corresponding driving factors and the virus-resistome associations is still limited. Here, using metagenomic analysis, we explored the viral communities and profiles of antibiotic resistance genes (ARGs) in 30 fields of paddy (rice soils, RS) and upland soils (corn soils, CS) at a regional scale across black soil region of Northeast China.

View Article and Find Full Text PDF

Organic fertilizer application promotes the prevalence of antibiotic resistance genes (ARGs), yet the factors driving temporal differences in ARG abundance under long-term organic fertilizer application remain unclear. This study investigated the temporal dynamics of ARG diversity and abundance in both bulk and rhizosphere soils over 17 years (2003-2019), and explored microbial evolution strategies, ARG hosts succession and the influence of root exudates on ARGs regulation. The results showed that the ARGs abundance in rhizosphere soil was lower than that in bulk soil under long-term fertilization, and ARGs abundance exhibited a decrease and then remained stable in rhizosphere soil over time.

View Article and Find Full Text PDF

Background: Antimicrobial resistance presents a formidable challenge, yet its existence predates the introduction of antibiotics. Our study delves into the presence of antimicrobial resistance genes (ARGs) in ancient permafrost microbiomes, comparing them with contemporary soil and pristine environments. Majority of the samples are from regions around Beringia, encompassing parts of Russia and Alaska, with only one sample originating from the Tien Shan Mountain range in Kyrgyzstan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: