The development of new metallocene-based polymerization catalysts and innovative processes derived thereof still constitutes a challenge for the manufacturing of polyolefinic materials with tailored properties (e. g. particular microstructure or topology, ultra-high molecular weight, high melting transition, and their combinations) for contemporary commercial applications. This personal account summarizes our continuing endeavors to advance the family of industry-relevant stereoselective propylene polymerization catalysts based on C -symmetric group 4 ansa-metallocenes incorporating multi-substituted fluorenyl-cyclopentadienyl {Cp/Flu} ligands. Within the framework of this project, valuable structural and catalytic data, harvested both for neutral metallocenes and for metallocenium ion-pairs, have been used for rational design of more efficient catalytic systems, reluctant towards side reactions, and for providing new stereoregular value-added polymer materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tcr.202000142 | DOI Listing |
The development of materials from renewable resources has been increasing, intending to reduce the consumption of fossil sources, with terpenes being one of the main families that reduce the consumption of isoprene. The study of the binary catalytic system neodymium versatate/dibutyl magnesium (NdV/Mg(-Bu)), for the coordination homopolymerization of β-myrcene and β-farnesene, was carried out analysing different [Nd] : [Mg] ratios (between 4 and 10). Reporting conversions of 92% and 83% at an [Nd] : [Mg] ratio of 8 for polymyrcene (PMy) and polyfarnesene (PFa), respectively, and microstructures comprising 1,4 content above 80% for both polymers (PMy, -59% and PFa, -83%).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China. Electronic address:
Gold nanoparticles (AuNPs) with ultra-small size anchored onto support materials is highly desired towards good catalytic performance. In this study, aldehyde-functionalized chitin nanocrystals (ChNCs-PVMA) are prepared by surface-initiated electron transfer atom transfer radical polymerization (SI-ARGET ATRP) with vanillin methacrylate (VMA) as a functional monomer, which are used as reductant, stabilizer and support for the fabrication of AuNPs through an environmentally friendly process that eliminates the need for any additional reducing agents. The abundant aldehyde groups of the prepared ChNCs-PVMA are crucial to achieve ultra-small AuNPs with average size of 5.
View Article and Find Full Text PDFAdv Mater
January 2025
Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, Québec, J3×1P7, Canada.
Anion exchange membrane fuel cells (AEMFCs) are among the most promising sustainable electrochemical technologies to help solve energy challenges. Compared to proton exchange membrane fuel cells (PEMFCs), AEMFCs offer a broader choice of catalyst materials and a less corrosive operating environment for the bipolar plates and the membrane. This can lead to potentially lower costs and longer operational life than PEMFCs.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China.
Disentangled ultra-high-molecular-weight polyethylene (-UHMWPE) solves the problem of the difficult processing of traditional UHMWPE caused by entanglements between molecular chains. In this review, we look into the innovative realm of nascent disentangled UHMWPE, concentrating on the recent advances achieved through the in situ polymerization of ethylene by single-site catalysts. The effect of single-site catalysts and polymerization conditions on the molecular characteristics is discussed in detail from the perspective of mechanism and DFT calculations.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany.
Carbon-fiber-reinforced composites of ultra-high-molecular-weight polyethylene (UHMWPE) are not easily prepared because of their high viscosity, although they can be advantageous in advanced engineering applications due to their superior mechanical properties in combination with their low specific weight and versatility. Short polyacrylonitrile-based carbon-fiber-reinforced UHMWPE composites with fiber contents of 5, 10, and 15 wt.% could easily be prepared using in situ ethylene polymerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!