Background: Intra-tumor heterogeneity (ITH) of colorectal cancer (CRC) complicates molecular tumor classification, such as transcriptional subtyping. Differences in cellular states, biopsy cell composition, and tumor microenvironment may all lead to ITH. Here we analyze ITH at the transcriptomic and proteomic levels to ascertain whether subtype discordance between multiregional biopsies reflects relevant biological ITH or lack of classifier robustness. Further, we study the impact of tumor location on ITH.
Methods: Multiregional biopsies from stage II and III CRC tumors were analyzed by RNA sequencing (41 biopsies, 14 tumors) and multiplex immune protein analysis (89 biopsies, 29 tumors). CRC subtyping was performed using consensus molecular subtypes (CMS), CRC intrinsic subtypes (CRIS), and TUMOR types. ITH-scores and network maps were defined to determine the origin of heterogeneity. A validation cohort was used with one biopsy per tumor (162 tumors).
Results: Overall, inter-tumor transcriptional variation exceeded ITH, and subtyping calls were frequently concordant between multiregional biopsies. Still, some tumors had high transcriptional ITH and were classified discordantly. Subtyping of proximal MSS tumors were discordant for 50% of the tumors, this ITH was related to differences in the microenvironment. Subtyping of distal MSS tumors were less discordant, here the ITH was more cancer-cell related. The subtype discordancy reflected actual molecular ITH within the tumors. The relevance of the subtypes was reflected at protein level where several inflammation markers were significantly increased in immune related transcriptional subtypes, which was verified in an independent cohort (Wilcoxon rank sum test; p<0.05). Unsupervised hierarchical clustering of the protein data identified large ITH at protein level; as the multiregional biopsies clustered together for only 9 out of 29 tumors.
Conclusion: Our transcriptomic and proteomic analyses show that the tumor location along the colorectum influence the ITH of CRC, which again influence the concordance of subtyping.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7746197 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241148 | PLOS |
Alzheimers Dement
December 2024
Beth Israel Deaconess Medical Center, Boston, MA, USA.
Background: A significant proportion of individuals preserve cognitive function despite meeting neuropathological criteria for Alzheimer's disease (AD) at autopsy, known as cognitive resilience. We aimed to define the molecular and cellular signatures of cognitive resilience against AD.
Method: We integrated multi-modal data from the Religious Order Study and Memory and Aging Project (ROSMAP), including bulk (n = 631) and multi-regional single nucleus (n = 48) RNA sequencing.
J Zhejiang Univ Sci B
December 2024
Department of Oral Pathology, Peking University School and Hospital of Stomatology / National Center of Stomatology / National Clinical Research Center for Oral Diseases / National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
In light of the lack of reliable molecular markers for odontogenic myxoma (OM), the detection of copy number variation (CNV) may present a more objective method for assessing ambiguous cases. In this study, we employed multiregional microdissection sequencing to integrate morphological features with genomic profiling. This allowed us to reveal the CNV profiles of OM and compare them with dental papilla (DP), dental follicle (DF), and odontogenic fibroma (OF) tissues.
View Article and Find Full Text PDFEpilepsia
December 2024
Department of Pediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, full member of the European Reference Network EpiCARE, Prague, Czech Republic.
Objective: We comprehensively characterized a large pediatric cohort with focal cortical dysplasia (FCD) type 1 to expand the phenotypic spectrum and to identify predictors of postsurgical outcomes.
Methods: We included pediatric patients with histopathological diagnosis of isolated FCD type 1 and at least 1 year of postsurgical follow-up. We systematically reanalyzed clinical, electrophysiological, and radiological features.
Eur J Radiol
December 2024
Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China. Electronic address:
Purpose: To develop an MRI-based multiregional radiomics model for the noninvasive desmoplastic reaction (DR) classification and prognosis stratification in stage II rectal cancer (RC) patients.
Materials And Methods: This study retrospectively involved 336 patients with RC from two centers, with 239 from Center 1 divided into training (n = 191) and internal validation (n = 48) datasets at an 8:2 ratio, and 97 from Center 2 serving as external validation dataset. Radiomics features were extracted, and a multiregional radiomics DR (M-RDR) signature was established using multi-level feature selection procedure.
Brief Bioinform
November 2024
Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China.
Intratumor heterogeneity significantly challenges the accuracy of existing prognostic models for esophageal squamous cell carcinoma (ESCC) by introducing biases related to the varied genetic and molecular landscapes within tumors. Traditional models, relying on single-sample, single-region bulk RNA sequencing, fall short of capturing the complexity of intratumor heterogeneity. To fill this gap, we developed a computational model for intratumor heterogeneity corrected signature (ITHCS) by employing both multiregion bulk and single-cell RNA sequencing to pinpoint genes that exhibit consistent expression patterns across different tumor regions but vary significantly among patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!