Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acceleration change index (ACI) is a fast and easy to understand heart rate variability (HRV) analysis approach used for assessing cardiac autonomic control of the nervous systems. The cardiac autonomic control of the nervous system is an example of highly integrated systems operating at multiple time scales. Traditional single scale based ACI did not take into account multiple time scales and has limited capability to classify normal and pathological subjects. In this study, a novel approach multiscale ACI (MACI) is proposed by incorporating multiple time scales for improving the classification ability of ACI. We evaluated the performance of MACI for classifying, normal sinus rhythm (NSR), congestive heart failure (CHF) and atrial fibrillation subjects. The findings reveal that MACI provided better classification between healthy and pathological subjects compared to ACI. We also compared MACI with other scale-based techniques such as multiscale entropy, multiscale permutation entropy (MPE), multiscale normalized corrected Shannon entropy (MNCSE) and multiscale permutation entropy (IMPE). The preliminary results show that MACI values are more stable and reliable than IMPE and MNCSE. The results show that MACI based features lead to higher classification accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7746153 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0243441 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!