Background: Both the World Health Organization and the Intergovernmental Panel on Climate Change project that malnutrition will be the greatest contributor to climate change-associated morbidity and mortality. Although there have been several studies that have examined the potential effects of climate change on human health broadly, the effects on malnutrition are still not well understood. We conducted a systematic review investigating the role of three climate change proxies (droughts, floods, and climate variability) on malnutrition in children and adults.
Methods And Findings: We identified 22 studies examining the effects of droughts, floods, and climate variability on at least one malnutrition metric. We found that 17 out of 22 studies reported a significant relationship between climate change proxies and at least one malnutrition metric. In meta-analysis, drought conditions were significantly associated with both wasting (Odds Ratio [OR] 1.46, 95% Confidence Interval [CI] 1.05-2.04) and underweight prevalence (OR 1.46, 95% CI 1.01-2.11).
Conclusions: Given the long-term consequences of malnutrition on individuals and society, adoption of climate change adaptation strategies such as sustainable agriculture and water irrigation practices, as well as improving nutritional interventions aimed at children aged 1-2 years and older adults, should be prioritised on global policy agendas in the coming years.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209118 | PMC |
http://dx.doi.org/10.1080/17441692.2020.1860247 | DOI Listing |
Nanomicro Lett
January 2025
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.
Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Fisheries, University of Rajshahi, Rajshahi, 6205, Bangladesh.
The lesser spiny eel, Macrognathus aculeatus (Bloch, 1786), holds substantial economic importance as a food fish in South Asia, due to its exceptional nutritional value. This study was conducted to investigate the reproductive ecology of M. aculeatus within the Gajner beel wetland ecosystem in northwestern Bangladesh, with a specific focus on size at sexual maturity, spawning season, and fecundity in relation to eco-climatic variables.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Civil Engineering and Construction, Faculty of Engineering and Design, Atlantic Technological University, Sligo, F91 YW50, Ireland.
Climate change has become an emerging topic, leading to widespread damage. However, when considering climate, attention is drawn to various scales, and urban microclimate has emerged as a trending subject due to its direct relevance to human living environments. Among the microclimatic factors, temperature and precipitation are utilized in order to identify trends.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Hydrobiology, Division of Biological and Health Sciences, Ecotoxicology Laboratory, Universidad Autónoma Metropolitana, Iztapalapa Unit, Mexico City C. P. 09340, Mexico.
Sea anemones play a crucial role in marine ecosystems. Recent studies have highlighted their physiological and ecological responses to thermal stress. Therefore, our objective was to perform a proteomic analysis of sea anemones in the Gulf of Mexico, subjected to thermal stress, to understand whether these organisms activate specific processes to resist increased temperature.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.
Carbon dioxide capture has attracted worldwide attention because CO emissions cause global warming and exacerbate climate change. Ionic liquids (ILs) have good application prospects in carbon capture due to their excellent properties, which provide a new chance to develop efficient and reversible carbon capture systems. This paper reviews the recent progress in CO chemical absorption by ILs, such as N-site, O-site, C-site, and multi-site functionalized ILs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!