A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lipid-Bilayer Assemblies on Polymer-Bearing Surfaces: The Nature of the Slip Plane in Asymmetric Boundary Lubrication. | LitMetric

Phospholipid-macromolecule complexes have been proposed to form highly efficient, lubricating boundary layers at artificial soft surfaces or at biological surfaces such as articular cartilage, where the friction reduction is attributed to the hydration lubrication mechanism acting at the exposed, hydrated head groups of the lipids. Here we measure, using a surface force balance, the normal and frictional interactions between model mica substrates across several different configurations of phosphatidylcholine (PC) lipid aggregates and adsorbed polymer (PEO) layers, to provide insight into the nature of such lubricating boundary layers in both symmetric and especially asymmetric configurations. Our results reveal that, irrespective of the configuration, the slip plane between the sliding surfaces reverts wherever possible to a bilayer-bilayer interface where hydration lubrication reduces the friction strongly. Where such an interface is not available, the sliding friction remains high. These findings may account for the low friction observed between both biological and synthetic hydrogel surfaces which may be asymmetrically coated with lipid-based boundary layers and fully support the hydration lubrication mechanism attributed to act at such boundary layers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774307PMC
http://dx.doi.org/10.1021/acs.langmuir.0c02956DOI Listing

Publication Analysis

Top Keywords

boundary layers
16
hydration lubrication
12
slip plane
8
lubricating boundary
8
lubrication mechanism
8
surfaces
5
boundary
5
layers
5
lipid-bilayer assemblies
4
assemblies polymer-bearing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!