The traditional Chinese medicines (TCMs) have been used to treat diseases over a long history, but it is still a great challenge to uncover the underlying mechanisms for their therapeutic effects due to the complexity of their ingredients. Based on a novel network pharmacology-based approach, we explored in this study the potential therapeutic targets of Liuwei Dihuang (LWDH) decoction in its neuroendocrine immunomodulation (NIM) function. We not only collected the known targets of the compounds in LWDH but also predicted the targets for these compounds using the balanced substructure-drug-target network-based inference (bSDTNBI), which is a target prediction method based on network inferring developed by our laboratory. A "target-(pathway)-target" (TPT) network, in which targets of LWDH were connected by relevant pathways, was constructed and divided into several separate modules with strong internal connections. Then the target module that contributes the most to NIM function was determined through a contribution scoring algorithm. Finally, the targets with the highest contribution score to NIM-related diseases in this target module were recommended as potential therapeutic targets of LWDH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrestox.0c00359 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!