This work reports the design, manufacturing and numerical simulation approach of a 6-pixel (4.5 mm/pixel) electroluminescent quantum dot light emitting device (QLED) based on CuInS/ZnS quantum dots as an active layer. The QLED device was fabricated using a conventional multi-layer thin film deposition. In addition, the electrical I-V curves were measured for each pixel independently, observing how the fabrication process and layer thickness have an influence in the shape of the plot. This experimental device, enabled us to create a computational model for the QLED based on the Transfer Hamiltonian approach to calculate the current density J (mA cm), the band diagram of the system, and the accumulated charge distribution. Besides, it is worth highlighting that the simulator allows the possibility to study the influence of different parameters of the QLED structure like the junction capacitance between the distinct multilayer set. Specifically, we found that the Anode-HIL interface capacitance has a greater influence in the I-V curve. This junction capacitance plays an important role in the current density increase and the QLED turn-on value when a forward voltage is applied to the device. The simulation enabled that influence could be controlled by the selection of the optimal thickness and transport layers during the experimental fabrication process. This work is remarkable since it achieves to fit simulation and experiment results in an accurate way for electroluminescent QLED devices; particularly the simulation of the device current, which is critical when designing the automotive electronics to control these new nanotechnology lighting devices in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/abcced | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea.
Poly[(9,9-dioctylfluorenyl-2,7-diyl)--(4,4'-(-(4-butylphenyl)))] (TFB) is a widely used hole transport material (HTM) in quantum dot light-emitting diodes (QLEDs). However, TFB-based solution-processed QLEDs face several challenges, including interlayer erosion, low hole mobility, shallow energy level of the highest occupied molecular orbital, and current leakage, which compromise the device efficiency and stability. To overcome these challenges, bromine and azide-based photothermally cross-linkable TFB derivatives, i.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
The development of quantum dot light-emitting diodes (QLEDs) represents a promising advancement in next-generation display technology. However, there are challenges, especially in achieving efficient hole injection, maintaining charge balance, and replacing low-stability organic materials such as PEDOT:PSS. To address these issues, in this study, self-assembled monolayers (SAMs) were employed to modify the surface properties of NiO, a hole injection material, within the structure of ITO/HIL/TFB/QDs/ZnMgO/Al QLEDs.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.
We demonstrate the use of [2-(9-carbazol-9-yl)ethyl]phosphonic acid (2PACz) and [2-(3,6-di--butyl-9-carbazol-9-yl)ethyl]phosphonic acid (-Bu-2PACz) as anode modification layers in metal-halide perovskite quantum dot light-emitting diodes (QLEDs). Compared to conventional QLED structures with PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrenesulfonate)/PVK (poly(9-vinylcarbazole)) hole-transport layers, the QLEDs made with phosphonic acid (PA)-modified indium tin oxide (ITO) anodes show an over seven-fold increase in brightness, achieving a brightness of 373,000 cd m, one of the highest brightnesses reported to date for colloidal perovskite QLEDs. Importantly, the onset of efficiency roll-off, or efficiency droop, occurs at ∼1000-fold higher current density for QLEDs made with PA-modified anodes compared to control QLEDs made with conventional PEDOT:PSS/PVK hole transport layers, allowing the devices to sustain significantly higher levels of external quantum efficiency at a brightness of >10 cd m.
View Article and Find Full Text PDFNano Lett
January 2025
Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China.
Quantum dots (QDs) light-emitting diodes (QLEDs) are gaining significant interest for the next generation of display and lighting applications because of their wide color gamut, cost-effective solution processability, and good stability. The last decades have witnessed rapid advances in improving their efficiency and lifetime. So far, among the three primary colors of QLEDs devices, the performance of blue QLEDs is considerably inferior to that of green and red ones including Cd-based and Cd-free devices, which is a key bottleneck hindering QLEDs' application.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The limited operational lifetime of quantum-dot light-emitting diodes (QLEDs) poses a critical obstacle that must be addressed before their practical application. Specifically, cadmium-free InP-based QLEDs, which are environmentally benign, experience significant operational degradation due to challenges in charge-carrier confinement stemming from the composition of InP quantum dots (QDs). This study investigates the operational degradation of InP QLEDs and provides direct evidence of the degradation process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!