Long-Range Exciton Migration in Coassemblies: Achieving High Photostability without Disrupting the Electron Donation of Fluorene Oligomers.

Angew Chem Int Ed Engl

CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Published: March 2021

In this work, photostable coassemblies from a nonphotostable fluorene oligomer (the energy donor) and a photostable oligomer (the energy acceptor) are fabricated. Long-range exciton migration over a net distance of about 370 energy-donor molecules to energy acceptors is demonstrated in such coassemblies. The fast and long energy migration allows harvesting of the excitation energy of energy donors by embedding a small number of energy acceptors for photostability enhancement. Importantly, embedding a small number of energy acceptors in coassemblies causes a negligible negative influence on the electron donation of energy donors that are desired in practical applications. The advantages of the coassemblies fabricated, that is, high photostability without disrupting the electron donation of energy donors, are well illustrated in fluorescence detection of trace explosives where prolonged working life and improved detection capacity are achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202012474DOI Listing

Publication Analysis

Top Keywords

electron donation
12
energy acceptors
12
energy donors
12
energy
10
long-range exciton
8
exciton migration
8
high photostability
8
photostability disrupting
8
disrupting electron
8
oligomer energy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!