Newly emerging super-resolution imaging techniques provide opportunities for precise observations on cellular microstructures. However, they also impose severe demands on fluorophores. Here, we develop a new series of NIR xanthene dyes, named as KRhs, by replacing the 10-position O of rhodamines with a cyclo-ketal. KRhs display an intense NIR emission peak at 700 nm with fluorescence quantum yields up to 0.64. More importantly, they, without the aid of enhancing buffer, exhibit stochastic fluorescence off-on switches to support time-resolved localization of single fluorophore. KRhs are functionalized into KRh-MitoFix, KRh-Mem and KRh-Halo that demonstrate mitochondria, plasma membrane and fusion protein targeting ability, respectively. Consequently, these KRh probes demonstrate straightforward usage for super-resolution imaging of these targets in live cells. Therefore, KRhs merit future development for fluorescence labeling and super-resolution imaging in the NIR region.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202005296DOI Listing

Publication Analysis

Top Keywords

super-resolution imaging
16
xanthene dyes
8
live cells
8
cyclo-ketal xanthene
4
dyes class
4
class near-infrared
4
near-infrared fluorophores
4
super-resolution
4
fluorophores super-resolution
4
imaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!