Myocardial infarction (MI) and heart failure (HF) are significant contributors of mortality worldwide. Mesenchymal stem cells (MSCs) hold a great potential for cardiac regenerative medicine-based therapies. Their therapeutic potential has been widely investigated in various in-vitro and in-vivo preclinical models. Besides, they have been tested in clinical trials of MI and HF with various outcomes. Differentiation to lineages of cardiac cells, neovascularization, anti-fibrotic, anti-inflammatory, anti-apoptotic and immune modulatory effects are the main drivers of MSC functions during cardiac repair. However, the main mechanisms regulating these functions and cross-talk between cells are not fully known yet. Increasing line of evidence also suggests that secretomes of MSCs and/or their extracellular vesicles play significant roles in a paracrine manner while mediating these functions. This chapter aims to summarize and highlight cardiac repair functions of MSCs during cardiac repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/5584_2020_598 | DOI Listing |
Pediatr Cardiol
January 2025
Department of Cardiac Surgery, University Hospital of Gent, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
Restenosis occurs commonly after aortic coarctation (CoA) repair, usually requiring treatment by balloon dilation. Its effect on physical exercise performance is not documented. A retrospective analysis of exercise testing and echocardiographic assessment was performed in children after CoA repair.
View Article and Find Full Text PDFWe present the case of a 74-year-old female patient with a 50 mm ascending aortic aneurysm who underwent ascending aorta replacement. During routine open heart surgery, suboptimal flow in the cardiopulmonary bypass circuit, led to the discovery of a type B aortic dissection with substantial flow in the false lumen. Conservative management was chosen, focusing on blood pressure control in the ICU.
View Article and Find Full Text PDFFASEB J
January 2025
National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China.
Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.
View Article and Find Full Text PDFJ Cardiothorac Vasc Anesth
January 2025
Department of Woman, Child, General and Specialistic Surgery, University of Campania "L. Vanvitelli," Naples, Italy.
Prog Mol Biol Transl Sci
January 2025
Department of Microbiology, Gargi College, University of Delhi, New Delhi, India. Electronic address:
The CRISPR-Cas system has emerged as a revolutionary tool in genetic research, enabling highly precise gene editing and significantly advancing the field of cardiovascular science. This chapter provides a comprehensive overview of the latest developments in utilizing CRISPR-Cas technologies to investigate and treat heart diseases. It delves into the application of CRISPR-Cas9 for creating accurate models of complex cardiac conditions, such as hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and various arrhythmias, which are essential for understanding disease mechanisms and testing potential therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!