A survey of the diversity and distribution of microfungi on leaf litter in Songkhla Province (Thailand) yielded two collections of pestalotiopsis-like fungi. Analyses of a combined ITS, TEF1-α and TUB2 sequence data matrix were applied to infer the phylogenetic position of these new isolates in . The phylogenies indicated that these two isolates were monophyletic and constituted a distinct lineage that perceived a taxonomic novelty in . This clade shared a close phylogenetic affinity with and . The comparison of morphological features with the phylogenetically closely related taxa are given and the new species is introduced as sp. nov. with comprehensive descriptions and illustrations herein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723021 | PMC |
http://dx.doi.org/10.1080/21501203.2020.1801873 | DOI Listing |
Mar Biotechnol (NY)
January 2025
Marine Ecology Research Center, Ministry of Natural Resources, First Institute of Oceanography, Qingdao, 266061, China.
Planiliza haematocheilus, a teleostan species noted for its ecological adaptability and economic significance, thrives in both freshwater and marine environments. This study presents a novel chromosome-level genome assembly through Hi-C, PacBio CCS, and Illumina sequencing methods. The assembled genome has a final size of 651.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
Strain NoAH (=KACC 23135=JCM 35999), a novel Gram-negative, motile bacterium with a rod-shaped morphology, was isolated from the zoo animal faecal samples, specifically the long-tailed goral species . The novel bacterial strain grew optimally in a nutrient broth medium under the following conditions: 1-2% (w/v) NaCl, pH 7-8 and 30 °C. The strain NoAH exhibited high tolerance to NaCl, with the ability to tolerate up to 7% (w/v) NaCl.
View Article and Find Full Text PDFAnal Chem
January 2025
Rural Health Research Institute, Charles Sturt University, Orange, New South Wales 2800, Australia.
The detection and analysis of circulating cell-free nucleic acid (ccfNA) biomolecules are redefining a new era of molecular targeted cancer therapies. However, the clinical translation of electrochemical ccfNA biosensing remains hindered by unresolved challenges in analytical specificity and sensitivity. In this Perspective, we present a novel electrochemical framework for improving ccfNA biosensor performance by optimizing the critical electrode-biomolecules-electrolyte interfaces.
View Article and Find Full Text PDFmSphere
January 2025
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.
View Article and Find Full Text PDFmSystems
January 2025
Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
Average nucleotide identity (ANI) is a widely used metric to estimate genetic relatedness, especially in microbial species delineation. While ANI calculation has been well optimized for bacteria and closely related viral genomes, accurate estimation of ANI below 80%, particularly in large reference data sets, has been challenging due to a lack of accurate and scalable methods. To bridge this gap, we introduce MANIAC, an efficient computational pipeline optimized for estimating ANI and alignment fraction (AF) in viral genomes with divergence around ANI of 70%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!