Novel species of fungi on from Thailand.

Mycology

Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai, Thailand.

Published: August 2020

A survey of the diversity and distribution of microfungi on leaf litter in Songkhla Province (Thailand) yielded two collections of pestalotiopsis-like fungi. Analyses of a combined ITS, TEF1-α and TUB2 sequence data matrix were applied to infer the phylogenetic position of these new isolates in . The phylogenies indicated that these two isolates were monophyletic and constituted a distinct lineage that perceived a taxonomic novelty in . This clade shared a close phylogenetic affinity with and . The comparison of morphological features with the phylogenetically closely related taxa are given and the new species is introduced as sp. nov. with comprehensive descriptions and illustrations herein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723021PMC
http://dx.doi.org/10.1080/21501203.2020.1801873DOI Listing

Publication Analysis

Top Keywords

novel species
4
species fungi
4
fungi thailand
4
thailand survey
4
survey diversity
4
diversity distribution
4
distribution microfungi
4
microfungi leaf
4
leaf litter
4
litter songkhla
4

Similar Publications

Planiliza haematocheilus, a teleostan species noted for its ecological adaptability and economic significance, thrives in both freshwater and marine environments. This study presents a novel chromosome-level genome assembly through Hi-C, PacBio CCS, and Illumina sequencing methods. The assembled genome has a final size of 651.

View Article and Find Full Text PDF

sp. nov., isolated from the faecal sample of a zoo animal, .

Int J Syst Evol Microbiol

January 2025

Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.

Strain NoAH (=KACC 23135=JCM 35999), a novel Gram-negative, motile bacterium with a rod-shaped morphology, was isolated from the zoo animal faecal samples, specifically the long-tailed goral species . The novel bacterial strain grew optimally in a nutrient broth medium under the following conditions: 1-2% (w/v) NaCl, pH 7-8 and 30 °C. The strain NoAH exhibited high tolerance to NaCl, with the ability to tolerate up to 7% (w/v) NaCl.

View Article and Find Full Text PDF

The detection and analysis of circulating cell-free nucleic acid (ccfNA) biomolecules are redefining a new era of molecular targeted cancer therapies. However, the clinical translation of electrochemical ccfNA biosensing remains hindered by unresolved challenges in analytical specificity and sensitivity. In this Perspective, we present a novel electrochemical framework for improving ccfNA biosensor performance by optimizing the critical electrode-biomolecules-electrolyte interfaces.

View Article and Find Full Text PDF

Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.

View Article and Find Full Text PDF

Average nucleotide identity (ANI) is a widely used metric to estimate genetic relatedness, especially in microbial species delineation. While ANI calculation has been well optimized for bacteria and closely related viral genomes, accurate estimation of ANI below 80%, particularly in large reference data sets, has been challenging due to a lack of accurate and scalable methods. To bridge this gap, we introduce MANIAC, an efficient computational pipeline optimized for estimating ANI and alignment fraction (AF) in viral genomes with divergence around ANI of 70%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!