Controlling Cytokine Storm Is Vital in COVID-19.

Front Immunol

Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Published: December 2020

AI Article Synopsis

  • COVID-19 has caused a massive global health crisis, largely due to immunopathological changes like reduced lymphocytes and increased cytokines that lead to disease progression and death.
  • The phenomenon known as cytokine storm is recognized as a primary cause of fatal outcomes in COVID-19, where excessive inflammation can damage tissue despite efforts to contain the virus.
  • Current therapeutic strategies to manage these cytokine storms include corticosteroids, blood purification, and experimental treatments like mesenchymal stem cell therapy, all aimed at mitigating the severe immune responses tied to the virus.

Article Abstract

Corona virus disease 2019 (COVID-19) has caused a global outbreak and severely posed threat to people's health and social stability. Mounting evidence suggests that immunopathological changes, including diminished lymphocytes and elevated cytokines, are important drivers of disease progression and death in coronavirus infections. Cytokine storm not only limits further spread of virus in the body but also induces secondary tissue damage through the secretion of large amounts of active mediators and inflammatory factors. It has been determined that cytokine storm is a major cause of deaths in COVID-19; therefore, in order to reverse the deterioration of severe and critically ill patients from this disease, the cytokine storm has become a key therapeutic target. Although specific mechanisms of the occurrences of cytokine storms in COVID-19 have not been fully illuminated, hyper-activated innate immune responses, and dysregulation of ACE2 (angiotensin converting enzyme 2) expression and its downstream pathways might provide possibilities. Tailored immunoregulatory therapies have been applied to counteract cytokine storms, such as inhibition of cytokines, corticosteroids, blood purification therapy, and mesenchymal stem cell therapy. This review will summarize advances in the research of cytokine storms induced by COVID-19, as well as potential intervention strategies to control cytokine storms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734084PMC
http://dx.doi.org/10.3389/fimmu.2020.570993DOI Listing

Publication Analysis

Top Keywords

cytokine storm
16
cytokine storms
16
cytokine
7
covid-19
5
controlling cytokine
4
storm
4
storm vital
4
vital covid-19
4
covid-19 corona
4
corona virus
4

Similar Publications

Idecabtagene vicleucel (ide-cel) is an anti-BCMA CAR-T cell therapy approved for patients with relapsed/refractory multiple myeloma (RRMM) after 2 prior lines of therapy. There is limited data on outcomes of CAR T in older adults and frail patients with RRMM. In this study, we utilized data from the Center for International Blood and Marrow Transplantation Registry to describe the safety and efficacy of ide-cel in these clinically important subgroups.

View Article and Find Full Text PDF

Patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) progressing after chimeric antigen receptor T-cell therapy (CAR T) have dismal outcomes. The prespecified post-CAR T expansion cohort of the ELM-1 study investigated the efficacy and safety of odronextamab, a CD20×CD3 bispecific antibody, in patients with disease progression after CAR T. Sixty patients received IV odronextamab weekly for 4 cycles followed by maintenance until progression.

View Article and Find Full Text PDF

Acute kidney injury following CAR-T cell therapy: a nephrologist's perspective.

Clin Kidney J

January 2025

Department of Medicine, Universidad Autonoma de Madrid and IIS-Fundacion Jimenez Diaz, Madrid, Spain.

Chimeric antigen receptor T (CAR-T) cell therapy, an emerging personalized immunotherapy for various haematologic malignancies, autoimmune diseases and other conditions, involves the modification of patients' T cells to express a chimeric antigen receptor that recognizes tumour or autoimmune cell antigens, allowing CAR-T cells to destroy cancerous and other target cells selectively. Despite remarkable clinical improvements in patients, multiple adverse effects have been associated with CAR-T cell therapy. Among the most recognized adverse effects are cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome and tumour lysis syndrome.

View Article and Find Full Text PDF

A smart responsive NIR-operated chitosan-based nanoswitch to induce cascade immunogenic tumor ferroptosis via cytokine storm.

Carbohydr Polym

March 2025

College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China. Electronic address:

In this work we present a near-infrared (NIR)-operated nanoswitch based on chitosan nanoparticles (EpCAM-CS-co-PNVCL@IR780/IMQ NPs) that induces cascade immunogenic tumor ferroptosis via cytokine storm. The formulation was prepared by loading a photosensitiser (IR780) and an immunotherapeutic drug (imiquimod; IMQ) into temperature- and pH-responsive chitosan-based NPs functionalized with tumor-targeting aptamers. The EpCAM aptamer can chaperone the NPs selectively into cancer cells, and allow them to enter the cell nucleus.

View Article and Find Full Text PDF

Reduced CAR T expansion post infusion is associated with poor survival in patients with large B cell lymphoma after two or more therapies.

Transplant Cell Ther

January 2025

Institute of Haematology, Royal Prince Alfred Hospital, SLHD, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, NSW, Australia.

CD19 directed chimeric antigen receptor (CAR) T-cell therapy is now standard of care for relapsed/refractory large B-cell non-Hodgkin lymphoma. Despite good overall response rates, many patients still experience disease progression and therefore it is important to predict those at risk of relapse following CAR T-cell therapy. We performed a prospective study using a flow cytometric assay at a single treatment centre to assess early CAR T-cell expansion in vivo 6 - 9 days after CAR-T cell infusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!