Extraintestinal pathogenic (ExPEC) can cause many human extraintestinal infections. Resistance and virulence of ExPEC are inextricably linked to its phylogenetic background. However, studies on type-specific distribution of resistance and virulence and the connection between resistance/virulence and molecular typing are lacking. Here, 411 ExPEC strains were collected and characterized using antimicrobial susceptibility testing and molecular typing. Among these, 74 representative strains were selected for whole genome sequencing and the killing assay. CH40-30-ST131, CH37-27-ST405, CH40-41-ST131, and CH13-5-ST12 isolates had high resistance rates to all antimicrobials tested. played a significant role in the β-lactam resistance of ExPEC isolates. CH14-64-ST1193, CH40-30-ST131, and CH35-27-ST69 isolates were highly virulent in the model. Virulence factors (VFs) involved in adherence (, , , and ), autotransporter (), invasion (, ), iron uptake (except for ), or toxin () might be responsible for pathogenicity . Specific antibiotic resistance genes (ARGs) or VFs were prevalent in specific types of strains, including , , , , , , and aerobactin genes in CH14-64-ST1193 isolates; , , , , , , , , , , and in CH40-30-ST131 isolates; in CH35-27-ST69 and CH13-5-ST12 isolates. Type distribution also differed by VF score. CH37-27-ST405 and CH26-5-ST38 isolates carried more ARGs and VFs indicating that they had a high resistance and virulence potential. This study demonstrates the type-specific distribution of resistance and virulence thus providing a basis for further research, prevention and treatment of ExPEC infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732638 | PMC |
http://dx.doi.org/10.3389/fmicb.2020.598305 | DOI Listing |
Vet Res
January 2025
National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
S. Typhimurium is a significant zoonotic pathogen, and its survival and transmission rely on stress resistance and virulence factors. Therefore, identifying key regulatory elements is crucial for preventing and controlling S.
View Article and Find Full Text PDFAnn Clin Microbiol Antimicrob
January 2025
Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
Proteus mirabilis (P. mirabilis) is one of the most important causative pathogens associated with complicated urinary tract infections with a 20% incidence. For epidemiological determinations, several phenotypic and molecular typing methods have been implicated.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
Department of Population Health, College of Veterinary Medicine, 501 D.W. Brooks Dr., University of Georgia, Athens, GA 30602.
Aims: To characterize Escherichia coli O25 ST131 (O25-ST131) isolated from Georgia poultry, - a "global high-risk" clonal strain.
Methods And Results: Using multiplex PCR to detect target genes in 98 isolates of avian pathogenic E. coli (APEC) O25 recovered from avians diagnosed with colibacillosis (n=87) and healthy chicks (n=11) in Georgia, USA.
J Infect Public Health
January 2025
Public health Laboratory, The regional laboratory, Jazan Health Cluster, Jazan, Saudi Arabia.
Background: Patients with severe COVID-19 may require intensive care unit (ICU) admission to manage life-threatening complications. However, ICU admission is associated with an increased risk of acquiring nosocomial infections caused by multidrug-resistant (MDR) bacteria, particularly carbapenem-resistant Enterobacterale (CRE). Enterobacter cloacae complex (ECC), a group of closely related species including Enterobacter cloacae, is a common cause of healthcare-associated infections (HAIs).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
Bovine mastitis is a considerable challenge within the dairy industry, causing significant financial losses and threatening public health. The increased occurrence of methicillin-resistant Staphylococcus aureus (MRSA) has provoked difficulties in managing bovine mastitis. Bacteriophage therapy presents a novel treatment strategy to combat MRSA infections, emerging as a possible substitute for antibiotics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!