Walking while performing a secondary task (dual-task (DT) walking) increases cognitive workload in young adults. To date, few studies have used neurophysiological measures in combination to subjective measures to assess cognitive workload during a walking task. This combined approach can provide more insights into the amount of cognitive resources in relation with the perceived mental effort involving in a walking task. The objective was to examine cognitive workload in young adults during walking conditions varying in complexity. Twenty-five young adults (mean = 24.4 ± 5.4) performed four conditions: (1) usual walking, (2) simple DT walking, (3) complex DT walking and (4) standing while subtracting. During the walking task, mean speed, cadence, stride time, stride length, and their respective coefficient of variation (CV) were recorded. Cognitive workload will be measured through changes in oxy- and deoxy-hemoglobin (ΔHbO and ΔHbR) during walking in the dorsolateral prefrontal cortex (DLPFC) and perceived mental demand score from NASA-TLX questionnaire. In young adults, ΔHbO in the DLPFC increased from usual walking to both DT walking conditions and standing while subtracting condition. ΔHbO did not differ between the simple and complex DT and between the complex DT and standing while subtracting condition. Perceived mental demand gradually increased with walking task complexity. As expected, all mean values of gait parameters were altered according to task complexity. CV of speed, cadence and stride time were significantly higher during DT walking conditions than during usual walking whereas CV of stride length was only higher during complex DT walking than during usual walking. Young adults had greater cognitive workload in the two DT walking conditions compared to usual walking. However, only the mental demand score from NASA-TLX questionnaire discriminated simple from complex DT walking. Subjective measure provides complementary information to objective one on changes in cognitive workload during challenging walking tasks in young adults. These results may be useful to improve our understanding of cognitive workload during walking.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714906 | PMC |
http://dx.doi.org/10.3389/fnhum.2020.592532 | DOI Listing |
Sci Rep
December 2024
School of Computer Science, University of Nottingham, Nottingham, UK.
Robotics holds the potential to streamline the execution of repetitive and dangerous tasks, which are difficult or impossible for a human operator. However, in complex scenarios, such as nuclear waste management or disaster response, full automation often proves unfeasible due to the diverse and intricate nature of tasks, coupled with the unpredictable hazards, and is typically prevented by stringent regulatory frameworks. Consequently, the predominant approach to managing activities in such settings remains human teleoperation.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China.
Unlabelled: EEG signals play a crucial role in assessing cognitive load, which is a key element in ensuring the secure operation of human-computer interaction systems. However, the variability of EEG signals across different subjects poses a challenge in applying the pre-trained cognitive load assessment model to new subjects. Moreover, previous domain adaptation research has primarily focused on developing complex network architectures to learn more domain-invariant features, overlooking the noise introduced by pseudo-labels and the challenges posed by domain migration problems.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
Machine Learning Group, Luleå University of Technology, Luleå, Sweden.
Finding the synchronization between Electroencephalography (EEG) and human cognition is an essential aspect of cognitive neuroscience. Adaptive Control of Thought-Rational (ACT-R) is a widely used cognitive architecture that defines the cognitive and perceptual operations of the human mind. This study combines the ACT-R and EEG-based cortex-level connectivity to highlight the relationship between ACT-R modules during the EEG-based -back task (for validating working memory performance).
View Article and Find Full Text PDFIntroduction: Managing cognitive demand is critical for aviation safety. Yet, accurately assessing pilot workload during complex flight maneuvers remains challenging. This study evaluated an integrated methodology combining real-time cognitive engagement indicators to provide a comprehensive assessment and assess the reliability of physiological and subjective measures for monitoring operator state.
View Article and Find Full Text PDFExp Brain Res
December 2024
Department of Rehabilitation Medicine, Xindu District People's Hospital, Chengdu, 610500, China.
Mind wandering can cause workers to overlook safety hazards and delay making accurate operational decisions, ultimately raising the potential for accidents. However, there is relatively little research on the physiological characteristics of drilling workers during mind wandering. The aim of this investigation was to tackle the constraints of previous studies and to establish a more comprehensive theoretical framework and practical guidance for safety management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!