The fruit fly is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee , of which diurnal foraging behavior has been described already in the early twentieth century. hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as or , cosmopolitan flies do not display a photoperiodic diapause. Similarly, bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects and , compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732648 | PMC |
http://dx.doi.org/10.3389/fnbeh.2020.601676 | DOI Listing |
Sci Rep
January 2025
Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
The parthenogenetic life cycle of the stick insect Medauroidea extradentata offers unique advantages for the generation of genome-edited strains, as an isogenic and stable mutant line can in principle be achieved already in the first generation (G0). However, genetic tools for the manipulation of their genes had not been developed until now. Here, we successfully implement CRISPR/Cas9 as a technique to modify the genome of the stick insect M.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA.
In holometabolous insects, critical weight (CW) attainment triggers pupation and metamorphosis, but its mechanism remains unclear in non-model organisms like mosquitoes. Here, we investigate the role of 20-hydroxyecdysone (20E) in CW assessment and pupation timing in Aedes albopictus and Ae. aegypti, vectors of arboviruses including dengue and Zika.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America.
Ruvbl1 (also known as TIP49, Pontin) encodes an ATPase of the AAA+ protein superfamily involved in several cellular functions, including chromatin remodeling, control of transcription, and cellular development (motility, growth, and proliferation). While its role has been well established in model organisms including vertebrates and invertebrates (e.g.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China.
Background: The function of some testis-specific genes (TSGs) in model insects have been studied, but their function in non-model insects remains largely unexplored. In the present study, we identified several TSGs in the fall armyworm (FAW), a significant agricultural pest, through comparative transcriptomic analysis. A testis-specific gene cluster (TSGC) comprising multiple functional genes and long non-coding RNAs was found.
View Article and Find Full Text PDFGenome Biol
December 2024
Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
We present GenomeDelta, a novel tool for identifying sample-specific sequences, such as recent transposable element (TE) invasions, without requiring a repeat library. GenomeDelta compares high-quality assemblies with short-read data to detect sequences absent from the short reads. It is applicable to both model and non-model organisms and can identify recent TE invasions, spatially heterogeneous sequences, viral insertions, and hotizontal gene transfers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!