Little is known about the relationship between soil microbial communities and soil properties in southern boreal forests. To further our knowledge about that relationship, we compared the soil samples in southern boreal forests of the Greater Khingan Mountains-the southernmost boreal forest biome in the world. The forests can be divided into boardleaf forests dominated by birch (Betula platyphylla) or aspen (Populus davidiana) and coniferous forests dominated by larch (Larix gmelinii) or pine (Pinus sylvestris var. mongolica). Results suggested different soil microbial communities and soil properties between these southern boreal forests. Soil protease activity strongly associated with soil fungal communities in broadleaf and coniferous forests (p < 0.05), but not with soil bacterial communities (p > 0.05). Soil ammonium nitrogen and total phosphorus contents strongly associated with soil fungal and bacterial communities in broadleaf forests (p < 0.05), but not in coniferous forests (p > 0.05). Soil potassium content demonstrated strong correlations with both soil fungal and bacterial communities in broadleaf and coniferous forests (p < 0.05). These results provide evidence for different soil communities and soil properties in southern boreal forest, and further elucidate the explicit correlation between soil microbial communities and soil properties in southern boreal forests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745012 | PMC |
http://dx.doi.org/10.1038/s41598-020-79206-0 | DOI Listing |
Appl Environ Microbiol
January 2025
Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
Polyunsaturated fatty acids (PUFAs) play a crucial role in aiding bacteria to adapt to extreme and stressful environments. While there is a well-established understanding of their production, accrual, and transfer within marine ecosystems, knowledge about terrestrial environments remains limited. Investigation of the intestinal microbiome of earthworms has illuminated the presence of PUFAs presumably of microbial origin, which contrasts with the surrounding soil.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA.
Unlabelled: Soil microbial communities play crucial roles in nutrient cycling and can help retain nitrogen in agricultural soils. Quantitative stable isotope probing (qSIP) is a useful method for investigating taxon-specific microbial growth and utilization of specific nutrients, such as nitrogen (N). Typically, qSIP is performed in a highly controlled lab setting, so the field relevance of lab qSIP studies remains unknown.
View Article and Find Full Text PDFBiomed Res Int
January 2025
Center for Personalized Nanomedicine, Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia.
Environmental pollution has been a significant concern for the last few years. The leather industry significantly contributes to the economy but is one of Bangladesh's most prominent polluting industries. It is also responsible for several severe diseases such as cancer, lung diseases, and heart diseases of leather workers because they use bleaching agents and chemicals, and these have numerous adverse effects on human health.
View Article and Find Full Text PDFScientifica (Cairo)
January 2025
Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
Tobacco, being a globally cultivated crop, holds significant social and economic importance. Tobacco plants are susceptible to the adverse effects of heavy metals (HMs), particularly cadmium (Cd), which hinders root development, disrupts water balance, and impedes nutrient absorption. Higher concentrations of HMs, especially Cd, naturally accumulate in tobacco leaves due to complex interactions within the plant-soil continuum.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Plant Pathology and Weed Research, ARO-the Volcani Institute, Rishon LeZion, Israel.
Background: Fungal plant diseases cause major crop losses. Phytopathogenic fungi's ability to evolve resistance to fungicides, alongside ongoing prohibition of such agents by the European Commission because of their pronounced adverse effects on human health and the environment, make their control a challenge. Moreover, the development of less perilous fungicides is a complex task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!