Silicon quantum dots are attractive for the implementation of large spin-based quantum processors in part due to prospects of industrial foundry fabrication. However, the large effective mass associated with electrons in silicon traditionally limits single-electron operations to devices fabricated in customized academic clean rooms. Here, we demonstrate single-electron occupations in all four quantum dots of a 2 x 2 split-gate silicon device fabricated entirely by 300-mm-wafer foundry processes. By applying gate-voltage pulses while performing high-frequency reflectometry off one gate electrode, we perform single-electron operations within the array that demonstrate single-shot detection of electron tunneling and an overall adjustability of tunneling times by a global top gate electrode. Lastly, we use the two-dimensional aspect of the quantum dot array to exchange two electrons by spatial permutation, which may find applications in permutation-based quantum algorithms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744547PMC
http://dx.doi.org/10.1038/s41467-020-20280-3DOI Listing

Publication Analysis

Top Keywords

single-electron operations
12
quantum dots
12
gate electrode
8
quantum
6
single-electron
4
operations foundry-fabricated
4
foundry-fabricated array
4
array quantum
4
dots silicon
4
silicon quantum
4

Similar Publications

Article Synopsis
  • The study presents a new method for photoredox carbobromination that allows the reaction of unactivated alkenes with α-bromocarbonyl compounds using blue LED light.
  • It successfully utilizes various compounds like α-bromoesters and α-bromonitriles to produce alkylated alkenes from different types of alkenes, including terminal and disubstituted ones.
  • The mechanism of this reaction follows a radical-addition radical-pairing (RARP) pathway, where the key step involves the interaction of bromine radicals and alkyl radicals instead of traditional carbocation mechanisms.
View Article and Find Full Text PDF

Fenton reaction technology has worked well in water and wastewater treatment; however it is often limited by such problems as continuous external supply of HO, slow Fe/Fe cycle rate, high energy requirements, and maintenance of low pH during operation. Herein, a novel self-sufficient heterogeneous Fenton system based on Fe/MoS was designed, fabricated, and optimized to effectively address these problems. The combined presence of Fe and sulfur vacancies sites in MoS played a pivotal role in the generation of HOvia two-step single-electron reduction process without any energy consumption.

View Article and Find Full Text PDF

Red-light absorbing photoredox catalysts offer potential advantages for large-scale reactions, expanding the range of usable substrates and facilitating bio-orthogonal applications. While many red-light absorbing/emitting fluorophores have been developed recently, functional red-light absorbing photoredox catalysts are scarce. Many photoredox catalysts rely on long-lived triplet excited states (triplets), which can efficiently engage in single electron transfer (SET) reactions with substrates.

View Article and Find Full Text PDF

Hydrogen atom transfer (HAT) and single electron transfer (SET) are two fundamental pathways for antiradical/antioxidant processes; however, a systematic operational evaluation of the same system is lacking. Herein, we present a comparative study of the HAT and SET processes applied to a library of well-characterized hybrid materials SiO@GA, SiO@GLA, SiO@GLAM, and the doubly hybrid material {GLA@SiO@GLAM}. Hydroxyl radicals (OH), produced by a Fenton system, react via the single electron transfer (SET) pathway and hydrogen atom transfer, through oxygen- and carbon-atoms, respectively, while the stable-radical DPPH via the HAT pathway through oxygen-atoms.

View Article and Find Full Text PDF

We report, for the first time, a visible-light-promoted Markovnikov hydroalkoxylation of α-trifluoromethyl alkenes with 1,2-diketones. This transformation proceeded smoothly in the presence of a tertiary amine (EtN), providing a series of enol ethers containing the trifluoromethylated tetrasubstituted center in moderate to excellent yields. In this protocol, hydrogen atom transfer between this amine and 1,2-diketone substrate affords a ketyl radical and an α-aminoalkyl radical, which engages in the formation of a radical anion of the α-CF alkene via a single electron transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!