Glioblastoma (GBM) contains self-renewing GBM stem cells (GSC) potentially amenable to immunologic targeting, but chimeric antigen receptor (CAR) T-cell therapy has demonstrated limited clinical responses in GBM. Here, we interrogated molecular determinants of CAR-mediated GBM killing through whole-genome CRISPR screens in both CAR T cells and patient-derived GSCs. Screening of CAR T cells identified dependencies for effector functions, including TLE4 and IKZF2. Targeted knockout of these genes enhanced CAR antitumor efficacy. Bulk and single-cell RNA sequencing of edited CAR T cells revealed transcriptional profiles of superior effector function and inhibited exhaustion responses. Reciprocal screening of GSCs identified genes essential for susceptibility to CAR-mediated killing, including RELA and NPLOC4, the knockout of which altered tumor-immune signaling and increased responsiveness of CAR therapy. Overall, CRISPR screening of CAR T cells and GSCs discovered avenues for enhancing CAR therapeutic efficacy against GBM, with the potential to be extended to other solid tumors. SIGNIFICANCE: Reciprocal CRISPR screening identified genes in both CAR T cells and tumor cells regulating the potency of CAR T-cell cytotoxicity, informing molecular targeting strategies to potentiate CAR T-cell antitumor efficacy and elucidate genetic modifications of tumor cells in combination with CAR T cells to advance immuno-oncotherapy..

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406797PMC
http://dx.doi.org/10.1158/2159-8290.CD-20-1243DOI Listing

Publication Analysis

Top Keywords

car cells
28
car
13
crispr screening
12
screening car
12
car t-cell
12
cells
11
stem cells
8
antitumor efficacy
8
identified genes
8
tumor cells
8

Similar Publications

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

Herpesvirus Infections After Chimeric Antigen Receptor T-Cell Therapy and Bispecific Antibodies: A Review.

Viruses

January 2025

Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.

In this narrative review, we explore the burden and risk factors of various herpesvirus infections in patients receiving chimeric antigen receptor T-cell (CAR-T) therapy or bispecific antibodies (BsAb) for the treatment of hematologic malignancies. Antiviral prophylaxis for herpes simplex/varicella zoster viruses became part of the standard of care in this patient population. Breakthrough infections may rarely occur, and the optimal duration of prophylaxis as well as the timing of recombinant zoster immunization remain to be explored.

View Article and Find Full Text PDF

Nanofibrous dressing materials with an antitumor function can potentially inhibit recurrence of melanoma following the surgical excision of skin tumors. In this study, hydrolyzed polyacrylonitrile (hPAN) nanofibers biofunctionalized with L-carnosine (CAR) and loaded with bio (CAR)-synthesized zinc oxide (ZnO) nanoparticles, ZnO/CAR-hPAN (hereafter called ZCPAN), were employed to develop an antimelanoma wound dressing. Inspired by the formulation of the commercial wound healing Zn-CAR complex, i.

View Article and Find Full Text PDF

Hidden Partner of Immunity: Microbiome as an Innovative Companion in Immunotherapy.

Int J Mol Sci

January 2025

College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea.

Recent studies have highlighted that the microbiome is the essential factor that can modulate the clinical activity of immunotherapy. However, the role of the microbiome varies significantly across different immunotherapies, suggesting that it is critical to understand the precise function of the microbiome in each type of immunotherapy. While many previous studies primarily focus on summarizing the role of the microbiome in immune checkpoint inhibitors, we seek to explore a novel aspect of the microbiome in other immunotherapies such as mesenchymal stem cell therapy, chimeric antigen receptor T cell therapy, and antibodies-based therapy (e.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and idiopathic inflammatory myositis (IIM) are autoimmune diseases managed with long-term immunosuppressive therapies. Hu19-CD828Z, a fully human anti-CD19 chimeric antigen receptor (CAR) with a CD28 costimulatory domain, is engineered to potently deplete B-cells. In this study, we manufactured Hu19-CD828Z CAR T-cells from peripheral blood of SLE, IIM, and SSc patients and healthy donors (HDs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!