A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comorbidity and severity-of-illness risk adjustment for hospital-onset infection using data from the electronic medical record. | LitMetric

Objective: To determine whether electronically available comorbidities and laboratory values on admission are risk factors for hospital-onset Clostridioides difficile infection (HO-CDI) across multiple institutions and whether they could be used to improve risk adjustment.

Patients: All patients at least 18 years of age admitted to 3 hospitals in Maryland between January 1, 2016, and January 1, 2018.

Methods: Comorbid conditions were assigned using the Elixhauser comorbidity index. Multivariable log-binomial regression was conducted for each hospital using significant covariates (P < .10) in a bivariate analysis. Standardized infection ratios (SIRs) were computed using current Centers for Disease Control and Prevention (CDC) risk adjustment methodology and with the addition of Elixhauser score and individual comorbidities.

Results: At hospital 1, 314 of 48,057 patient admissions (0.65%) had a HO-CDI; 41 of 8,791 patient admissions (0.47%) at community hospital 2 had a HO-CDI; and 75 of 29,211 patient admissions (0.26%) at community hospital 3 had a HO-CDI. In multivariable regression, Elixhauser score was a significant risk factor for HO-CDI at all hospitals when controlling for age, antibiotic use, and antacid use. Abnormal leukocyte level at hospital admission was a significant risk factor at hospital 1 and hospital 2. When Elixhauser score was included in the risk adjustment model, it was statistically significant (P < .01). Compared with the current CDC SIR methodology, the SIR of hospital 1 decreased by 2%, whereas the SIRs of hospitals 2 and 3 increased by 2% and 6%, respectively, but the rankings did not change.

Conclusions: Electronically available patient comorbidities are important risk factors for HO-CDI and may improve risk-adjustment methodology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507318PMC
http://dx.doi.org/10.1017/ice.2020.1344DOI Listing

Publication Analysis

Top Keywords

risk adjustment
12
elixhauser score
12
patient admissions
12
risk
8
admission risk
8
risk factors
8
hospital
8
community hospital
8
hospital ho-cdi
8
risk factor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!