Objective: Alzheimer disease (AD) is a chronic neurodegenerative disorder that affects millions of individuals worldwide. Symptoms include memory dysfunction and deficits in attention, planning, language, and overall cognitive function. Olfactory dysfunction is a common symptom of AD and evidence supports that it is an early marker. Furthermore, olfactory bulb and entorhinal cortex atrophy are well described in AD. However, in AD, no studies have assessed the olfactory cortex as a whole and if sex effects are observed.
Methods: Magnetic Resonance Imaging was used to scan 39 participants with an average age of 72 years and included men and women. AAL Single-Subject Atlas (implemented in PNEURO tool - PMOD 3.8) was used to determine the volume of the olfactory cortex and the hippocampus. Olfactory cortex volume was lower in both men and women AD cases compared with controls. This decrease was more apparent in the left olfactory cortex and was influenced by age. As expected, hippocampal volume was also significantly reduced in AD. However, this was only observed in the male cohort. A significant correlation was observed between levels of education and hippocampal volume in controls that were not detected in the AD participants. Asymmetry was observed in the olfactory cortex volume when comparing left and right volumes in both the control and AD participants, which was not observed in the hippocampus.
Results: These data highlight the importance of the role of olfactory cortical atrophy in the pathogenesis of AD and the interplay between the olfactory deficits and degeneration of olfactory regions in the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1567205017666201215120909 | DOI Listing |
Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Ear, Nose, and Throat, The First Affiliated of Soochow University, Suzhou, China.
This study aimed to investigate the topological properties of brain functional networks in patients with tinnitus of varying durations. A total of 51 tinnitus patients (divided into recent-onset tinnitus (ROT) and persistent tinnitus (PT) groups) and 27 healthy controls (HC) were recruited. All participants underwent resting-state functional MRI and audiological assessments.
View Article and Find Full Text PDFAPL Bioeng
March 2025
Biomedical Engineering Unit, Department of Industrial Engineering, University of Florence, 50121 Florence, Italy.
Olfactory perception can be studied in deep brain regions at high spatial resolutions with functional magnetic resonance imaging (fMRI), but this is complex and expensive. Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) are limited to cortical responses and lower spatial resolutions but are easier and cheaper to use. Unlike EEG, available fNIRS studies on olfaction are few, limited in scope, and contradictory.
View Article and Find Full Text PDFExp Neurol
January 2025
Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
Introduction: Brain damage caused by subarachnoid hemorrhage (SAH) currently lacks effective treatment, leading to stagnation in the improvement of functional outcomes for decades. Recent studies have demonstrated the therapeutic potential of exosomes released from mesenchymal stem cells (MSC), which effectively attenuate neuronal apoptosis and inflammation in neurological diseases. Due to the challenge of systemic dilution associated with intravenous administration, intranasal delivery has emerged as a novel approach for targeting the brain.
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China. Electronic address:
Alprazolam (Alp), a triazolobenzodiazepine, is widely prescribed for the treatment of sleep disorders, anxiety, and panic disorder. While oral administration remains the standard route, its slow onset of action has prompted interest in intranasal delivery as an alternative, offers the potential for direct drug delivery to the brain. This study aims to develop a fast-acting intranasal formulation of Alp (Alp-nd).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!