Milling of Graphene Reinforced Ti6Al4V Nanocomposites: An Artificial Intelligence Based Industry 4.0 Approach.

Materials (Basel)

Industrial Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia.

Published: December 2020

The studies about the effect of the graphene reinforcement ratio and machining parameters to improve the machining performance of Ti6Al4V alloy are still rare and incomplete to meet the Industry 4.0 manufacturing criteria. In this study, a hybrid adaptive neuro-fuzzy inference system (ANFIS) with a multi-objective particle swarm optimization method is developed to obtain the optimal combination of milling parameters and reinforcement ratio that lead to minimize the feed force, depth force, and surface roughness. For achieving this, Ti6Al4V matrix nanocomposites reinforced with 0 wt.%, 0.6 wt.%, and 1.2 wt.% graphene nanoplatelets (GNPs) are produced. Afterward, a full factorial approach was used to design experiments to investigate the effect of cutting speed, feed rate, and graphene nanoplatelets ratio on machining behaviour. After that, artificial intelligence based on ANFIS is used to develop prediction models as the fitness function of the multi-objective particle swarm optimization method. The experimental results showed that the developed models can obtain an accurate estimation of depth force, feed force, and surface roughness with a mean absolute percentage error of 3.87%, 8.56%, and 2.21%, respectively, as compared with experimentally measured outputs. In addition, the developed artificial intelligence models showed 361.24%, 35.05%, and 276.47% less errors for depth force, feed force, and surface roughness, respectively, as compared with the traditional mathematical models. The multi-objective optimization results from the new approach indicated that a cutting speed of 62 m/min, feed rate of 139 mm/min, and GNPs reinforcement ratio of 1.145 wt.% lead to the improved machining characteristics of GNPs reinforced Ti6Al4V matrix nanocomposites. Henceforth, the hybrid method as a novel artificial intelligent method can be used for optimizing the machining processes with complex relationships between the output responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765064PMC
http://dx.doi.org/10.3390/ma13245707DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
12
reinforcement ratio
12
feed force
12
depth force
12
force surface
12
surface roughness
12
reinforced ti6al4v
8
intelligence based
8
ratio machining
8
multi-objective particle
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

ECU, Perth, Western Australia, Australia.

Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE) Rostock/Greifswald, Rostock, Germany.

Background: Using artificial intelligence approaches enable automated assessment and analysis of speech biomarkers for Alzheimer's disease, for example using chatbot technology. However, current chatbots often are unsuitable for people with cognitive impairment. Here, we implemented a user-centred-design approach to evaluate and improve usability of a chatbot system for automated speech assessments for people with preclinical, prodromal and early dementia.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Siemens Heathineers, Princeton, NJ, USA.

Background: The recent breakthrough in monoclonal antibody treatment for Alzheimer's disease (AD) has ushered in a new phase in AD healthcare. However, associated amyloid-related imaging abnormalities (ARIA) present a significant risk to patients, necessitating careful monitoring. Detection by radiologists can be challenging and may suffer from inconsistency.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, DF, Mexico.

Background: The World Health Organization forecasts a population of 2,000 million people over 60 years by the year 2050, with 7% of this population suffering from dementia. Making a constant clinical-technological evaluation of older adults allows early detection of the disease and provides a better quality of life for the patient. In this sense, the research and development of innovative technological systems for the early detection of the disease, its monitoring and management of the growing number of patients with cognitive diseases has increased in recent years, integrating data collection and its automatic processing based on geriatric metrics into these systems using artificial intelligence (AI) methods.

View Article and Find Full Text PDF

Background: To address the rapid increase in the number of persons with Alzheimer's disease or related dementia (PwADRD), we seek to combine the benefits of music intervention with the adaptability of social robotics. Our system, the Music intervention Using Socially Engaging robotics (MUSE) system, seeks to provide a structured music intervention session to a group of PwADRD using the social robot Pepper. As seen in Figure 1, the Pepper robot leads the PwADRD through a 3-step music intervention session.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!