The purpose of this study was to investigate whether ultra-high-field dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the breast at 7T using quantitative pharmacokinetic (PK) analysis can differentiate between benign and malignant breast tumors for improved breast cancer diagnosis and to predict molecular subtypes, histologic grade, and proliferation rate in breast cancer. In this prospective study, 37 patients with 43 lesions suspicious on mammography or ultrasound underwent bilateral DCE-MRI of the breast at 7T. PK parameters (K, k, V) were evaluated with two region of interest (ROI) approaches (2D whole-tumor ROI or 2D 10 mm standardized ROI) manually drawn by two readers (senior reader, R1, and R2) independently. Histopathology served as the reference standard. PK parameters differentiated benign and malignant lesions (n = 16, 27, respectively) with good accuracy (AUCs = 0.655-0.762). The addition of quantitative PK analysis to subjective BI-RADS classification improved breast cancer detection from 88.4% to 97.7% for R1 and 86.04% to 97.67% for R2. Different ROI approaches did not influence diagnostic accuracy for both readers. Except for K for whole-tumor ROI for R2, none of the PK parameters were valuable to predict molecular subtypes, histologic grade, or proliferation rate in breast cancer. In conclusion, PK-enhanced BI-RADS is promising for the noninvasive differentiation of benign and malignant breast tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765071PMC
http://dx.doi.org/10.3390/cancers12123763DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
benign malignant
12
breast
9
pharmacokinetic analysis
8
dynamic contrast-enhanced
8
contrast-enhanced magnetic
8
magnetic resonance
8
resonance imaging
8
cancer diagnosis
8
dce-mri breast
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!