Profiling Patients by Intensity of Nursing Care: An Operative Approach Using Machine Learning.

J Pers Med

Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, via Loredan, 18, 35121 Padova, Italy.

Published: December 2020

Physical function is a patient-oriented indicator and can be considered a proxy for the assignment of healthcare personnel. The study aims to create an algorithm that classifies patients into homogeneous groups according to physical function. A two-step machine-learning algorithm was applied to administrative data recorded between 2015 and 2018 at the University Hospital of Padova. A clustering-large-applications (CLARA) algorithm was used to partition patients into homogeneous groups. Then, machine learning technique (MLT) classifiers were used to categorize the doubtful records. Based on the results of the CLARA algorithm, records were divided into three groups according to the Barthel index: <45, >65, ≥45 and ≤65. The support vector machine was the MLT showing the best performance among doubtful records, reaching an accuracy of 66%. The two-step algorithm, since it splits patients into low and high resource consumption, could be a useful tool for organizing healthcare personnel allocation according to the patients' assistance needs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768500PMC
http://dx.doi.org/10.3390/jpm10040279DOI Listing

Publication Analysis

Top Keywords

machine learning
8
physical function
8
healthcare personnel
8
patients homogeneous
8
homogeneous groups
8
clara algorithm
8
doubtful records
8
algorithm
5
profiling patients
4
patients intensity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!