Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Treatment effect estimation must account for observed confounding, in which factors affect treatment assignment and outcomes simultaneously. Ignoring observed confounding risks concluding that a helpful treatment is not beneficial or that a treatment is safe when actually harmful. Propensity score matching or weighting adjusts for observed confounding, but the best way to use propensity scores for multiple treatments is unknown. It is unclear when choice of a different weighting or matching strategy leads to divergent inferences. We used Monte Carlo simulations (1000 replications) to examine sensitivity of multivalued treatment inferences to propensity score weighting or matching strategies. We consider five variants of propensity score adjustment: inverse probability of treatment weights, generalized propensity score matching, kernel weights (KW), vector matching, and a new hybrid that is easily implemented-vector-based kernel weighting (VBKW). VBKW matches observations with similar propensity score vectors, assigning greater KW to observations with similar probabilities within a given bandwidth. We varied degree of propensity score model misspecification, sample size, treatment effect heterogeneity, initial covariate imbalance, and sample distribution across treatment groups. We evaluated sensitivity of results to propensity score estimation technique (multinomial logit or multinomial probit). Across simulations, VBKW performed equally or better than the other methods in terms of bias, efficiency, and covariate balance measured via prognostic scores. Our simulations suggest that VBKW is amenable to full automation and is less sensitive to PS model misspecification than other methods used to account for observed confounding in multivalued treatment analyses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258782 | PMC |
http://dx.doi.org/10.1002/sim.8836 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!