A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vector-based kernel weighting: A simple estimator for improving precision and bias of average treatment effects in multiple treatment settings. | LitMetric

Treatment effect estimation must account for observed confounding, in which factors affect treatment assignment and outcomes simultaneously. Ignoring observed confounding risks concluding that a helpful treatment is not beneficial or that a treatment is safe when actually harmful. Propensity score matching or weighting adjusts for observed confounding, but the best way to use propensity scores for multiple treatments is unknown. It is unclear when choice of a different weighting or matching strategy leads to divergent inferences. We used Monte Carlo simulations (1000 replications) to examine sensitivity of multivalued treatment inferences to propensity score weighting or matching strategies. We consider five variants of propensity score adjustment: inverse probability of treatment weights, generalized propensity score matching, kernel weights (KW), vector matching, and a new hybrid that is easily implemented-vector-based kernel weighting (VBKW). VBKW matches observations with similar propensity score vectors, assigning greater KW to observations with similar probabilities within a given bandwidth. We varied degree of propensity score model misspecification, sample size, treatment effect heterogeneity, initial covariate imbalance, and sample distribution across treatment groups. We evaluated sensitivity of results to propensity score estimation technique (multinomial logit or multinomial probit). Across simulations, VBKW performed equally or better than the other methods in terms of bias, efficiency, and covariate balance measured via prognostic scores. Our simulations suggest that VBKW is amenable to full automation and is less sensitive to PS model misspecification than other methods used to account for observed confounding in multivalued treatment analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258782PMC
http://dx.doi.org/10.1002/sim.8836DOI Listing

Publication Analysis

Top Keywords

propensity score
28
observed confounding
16
treatment
11
kernel weighting
8
account observed
8
propensity
8
score matching
8
weighting matching
8
multivalued treatment
8
model misspecification
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!