Effect of percutaneous aortic valve position on stress map in ascending aorta: A fluid-structure interaction analysis.

Artif Organs

Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.

Published: July 2021

Transcatheter aortic valve implantation (TAVI) is an increasingly widespread procedure. Although this intervention is indicated for high and low surgical risk patients, some issues still remain, such as prosthesis positioning optimization in the aortic annulus. Coaxial positioning of the percutaneous prosthesis influences directly on the aortic wall stress map. The determination of the mechanical stress that acts on the vascular endothelium resulting from blood flow can be considered an important task, since TAVI positioning can lead to unfavorable hemodynamic patterns, resulting in changes in parietal stress, such as those found in post-stenotic dilatation region. This research aims to investigate the influence of the prosthetic valve inclination angle in the mechanical stresses acting in the ascending aortic wall. Aortic compliance and blood flow during cardiac cycle were numerically obtained using fluid structure interaction. The aortic model was developed through segmentation of a computed tomography image of a specific patient submitted to TAVI. When compared to standard position (coaxiality match between the prosthesis and the aortic annulus), the inclination of 4° directed to the left main coronary artery decreased the aortic wall area with high values of wall shear stress and pressure. Coaxial positioning optimization of percutaneous aortic prosthesis may decrease the high mechanical stress area. These changes may be important to reduce the aortic remodeling process, vascular calcification or even the prosthesis half-life. Computational fluid dynamics makes room for personalized medicine, with manufactured prosthesis tailored to each patient.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aor.13883DOI Listing

Publication Analysis

Top Keywords

aortic wall
12
aortic
10
percutaneous aortic
8
aortic valve
8
stress map
8
positioning optimization
8
aortic annulus
8
coaxial positioning
8
mechanical stress
8
blood flow
8

Similar Publications

A patient in his early adolescence, who was treated for T5-T6 tubercular spondylodiscitis with an un-instrumented decompression, presented at 36 months post-index surgery, for post-laminectomy instability and kyphosis, after completing his requisite antitubercular treatment. He underwent thoracic posterior instrumented kyphosis correction and anterior reconstruction, with a T5-T6 partial corpectomy and corpectomy spacer placement, through a posterior midline incision. On the second postoperative day, he started complaining of pain on the left side of his chest, abdomen and left shoulder.

View Article and Find Full Text PDF

Atherogenesis is prone in medium and large-sized vessels, such as the aorta and coronary arteries, where hemodynamic stress is critical. Low and oscillatory wall shear stress contributes significantly to endothelial dysfunction and inflammation. Murray's law minimizes energy expenditure in vascular networks and applies to small arteries.

View Article and Find Full Text PDF

A Novel Staging System of Cardiac Damage in Aortic Stenosis based on Multi-Chamber Myocardial Deformation.

Eur Heart J Cardiovasc Imaging

January 2025

Department of Cardiology, Istituto Auxologico Italiano, IRCCS, Milan, Italy.

Aims: This study evaluates whether multi-chamber myocardial deformation analysis using speckle tracking echocardiography (STE) can enhance validated current staging systems and improve risk stratification for patients with moderate-to-severe aortic stenosis (AS).

Methods And Results: We reanalyzed 2D, Doppler, and STE data obtained from two cohorts: derivation (654 patients, median age: 82 years; 51% men) and validation (237 patients, median age: 77 years; 55% men) with at least moderate AS (aortic valve area<1.5 cm2).

View Article and Find Full Text PDF

The contribution of sex hormones to cardiovascular disease, including arterial stiffness, is established; however, the role of sex chromosome interaction with sex hormones, particularly in women, is lagging. Arterial structural stiffness depends on the intrinsic properties and transmural wall geometry that comprise a network of cells and extracellular matrix (ECM) proteins expressed in a sex-dependent manner. In this study, we used four-core genotype (FCG) mice to determine the relative contribution of sex hormones versus sex chromosomes or their interaction with arterial structural stiffness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!