Inhibition of immunomodulating enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is considered one of the potential approaches in the fight against cancer and other diseases. Comprehensive biophysical and cellular studies have shown that quinine derivatives effectively inhibit the activity of IDO1. Mechanistic studies revealed that the potent quinine derivatives compete with heme for binding to apo-IDO1 and perturb its reversible binding propensity to apo-IDO1 via the formation of a heme-inhibitor complex. This IDO1 inhibitory pathway could provide new avenues to immunotherapy-based drug discovery strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cc06942fDOI Listing

Publication Analysis

Top Keywords

indoleamine 23-dioxygenase
8
quinine derivatives
8
inhibition immunosuppressive
4
immunosuppressive indoleamine
4
23-dioxygenase targeting
4
targeting heme
4
heme apo-form
4
apo-form inhibition
4
inhibition immunomodulating
4
immunomodulating enzyme
4

Similar Publications

The hemoprotein indoleamine 2,3-dioxygenase-1 (IDO1) is the first and rate-limiting enzyme in mammalian tryptophan metabolism. Interest in IDO1 continues to grow, due to the ever expanding influence IDO1 plays in the immune response. This study examined the contribution of all individual cysteine residues towards the overall catalytic properties and stability of recombinant human IDO1 via mutagenesis studies using a range of biochemical and spectroscopic techniques, including in vitro kinetic assessment, secondary structure identification via circular dichroism spectroscopy and thermal stability assessment.

View Article and Find Full Text PDF

Indoleamine 2'3 dioxygenase (INDO), the rate-limiting enzyme in the catabolism of the essential amino acid L-tryptophan, is induced in many cell lines following interferon gamma (IFN-gamma) treatment. The induction of this enzyme has been associated with the antiparasitic and cytotoxic activities of human IFN-gamma. DNA analysis coupled to morphologic studies indicated that ME180 cells underwent apoptosis within 48 h of treatment with IFN-gamma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!