A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessions9jb0a3itf3solthj2576un16n9iq2e8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mixed-Precision Kernel Recursive Least Squares. | LitMetric

Kernel recursive least squares (KRLS) is a widely used online machine learning algorithm for time series predictions. In this article, we present the mixed-precision KRLS, producing equivalent prediction accuracy to double-precision KRLS with a higher training throughput and a lower memory footprint. The mixed-precision KRLS applies single-precision arithmetic to the computation components being not only numerically resilient but also computationally intensive. Our mixed-precision KRLS demonstrates the 1.32, 1.15, 1.29, 1.09, and 1.08× training throughput improvements using 24.95%, 24.74%, 24.89%, 24.48%, and 24.20% less memory footprint without losing any prediction accuracy compared to double-precision KRLS for a 3-D nonlinear regression, a Lorenz chaotic time series, a Mackey-Glass chaotic time series, a sunspot number time series, and a sea surface temperature time series, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2020.3041677DOI Listing

Publication Analysis

Top Keywords

time series
20
mixed-precision krls
12
kernel recursive
8
recursive squares
8
prediction accuracy
8
double-precision krls
8
training throughput
8
memory footprint
8
chaotic time
8
krls
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!