A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Supramolecular self-assembly of the γ-cyclodextrin and perfluorononanoic acid system in aqueous solution. | LitMetric

AI Article Synopsis

  • The study explores how cyclodextrins (CDs) and surfactants interact to form inclusion complexes, specifically focusing on the self-assembly of perfluorononanoic acid (PFNA) with γ-cyclodextrin in water.
  • The research reveals that PFNA alone forms spherical uni-lamellar vesicles, but adding γ-CD leads to the creation of a unique hydrogel with a crystal-like structure, characterized by specific shapes observed through various microscopy techniques.
  • The hydrogels exhibit a reversible transformation to crystalline precipitates and can change their morphology under different shear rates, revealing potential applications in designing smart materials through controlled self-assembly processes.

Article Abstract

Recently, inclusion complexes formed from cyclodextrins (CDs) and surfactants have been found to play complex and important roles in supramolecular self-assembly. In this work, the self-assembly of perfluorononanoic acid (PFNA)/γ-cyclodextrin (γ-CD) in aqueous solution was investigated. The sole PFNA solution assembled into spherical uni-lamellar vesicles under certain concentrations as revealed by freeze-fracture transmission electron microscopy (FF-TEM) images. Interestingly, when γ-CD was added into the PFNA solution, one novel kind of cyclodextrin-based hydrogel with a crystal-like structure was obtained. The morphology of the hydrogels was inerratic parallel hexahedron or regular hexahedron as revealed by optical microscopy and scanning electron microscopy (SEM) measurements. Furthermore, the hydrogels were transformed into crystalline precipitates, which were composed of highly uniform tetragonal sheets with excellent crystallinity and homogeneous size distribution just by changing the γ-CD concentration. More amazingly, the crystal-like hydrogels were sensitive to shear and switched to solutions in their morphology with bar-like and rod-like aggregates and smaller square sheets under different shear rates, and the hydrogel-solution transition behavior was a reversable process. 1H NMR, Fourier transform infrared (FT-IR) and wide-angle X-ray diffraction (WXRD) measurements were performed to lead us to propose the formation mechanism of the above aggregates. Hopefully, our studies will cast new light on the fundamental investigations into the self-assembly of supramolecular systems of fluorinated surfactants and CD molecules and provide a new idea for smart material design.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0sm01744bDOI Listing

Publication Analysis

Top Keywords

supramolecular self-assembly
8
perfluorononanoic acid
8
aqueous solution
8
pfna solution
8
electron microscopy
8
self-assembly γ-cyclodextrin
4
γ-cyclodextrin perfluorononanoic
4
acid system
4
system aqueous
4
solution
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!