A new type of sweeping operation-dual-mode continuous-wave (CW) self-sweeping-is demonstrated in an erbium-doped fiber laser with a sweeping range of 2.8 nm in a region of 1605 nm. The laser generates two adjacent longitudinal modes of equal intensity, but at some moments of time, one of the modes with lower frequency begins to vanish and a new one with even higher frequency starts to grow. As a result, the self-sweeping of lasing frequency with CW intensity dynamics is observed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.412781DOI Listing

Publication Analysis

Top Keywords

fiber laser
8
dual-longitudinal-mode self-sweeping
4
self-sweeping operation
4
operation er-doped
4
er-doped fiber
4
laser type
4
type sweeping
4
sweeping operation-dual-mode
4
operation-dual-mode continuous-wave
4
continuous-wave self-sweeping-is
4

Similar Publications

In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate.

View Article and Find Full Text PDF

Research Progress in Fiber Bragg Grating-Based Ocean Temperature and Depth Sensors.

Sensors (Basel)

December 2024

College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China.

Fiber Bragg gratings (FBGs) are widely used in stress and temperature sensing due to their small size, light weight, high resistance to high temperatures, corrosion, electromagnetic interference, and low cost. In recent years, various structural enhancements and sensitization to FBGs have been explored to improve the performance of ocean temperature and depth sensors, thereby enhancing the accuracy and detection range of ocean temperature and depth data. This paper reviews advancements in temperature, pressure, and dual-parameter enhancement techniques for FBG-based sensors.

View Article and Find Full Text PDF

Fast-neutron reactors are an important representative of Generation IV nuclear reactors, and due to the unique structure and material properties of fast reactor fuel, traditional mechanical cutting methods are not applicable. In contrast, laser cutting has emerged as an ideal alternative. However, ensuring the stability of optical fibers and laser cutting heads under high radiation doses, as well as maintaining cutting quality after irradiation, remains a significant technical challenge.

View Article and Find Full Text PDF

The emerging thermoplastic composite material PEKK exhibits superior thermal stability compared to PEEK. In this work, CF/PEKK laminates were fabricated using laser-assisted heating in AFP, and the effects of repass treatment on the mechanical properties and microstructure of the laminates were compared. The results show that after a single repass treatment, the tensile strength of the laminates increased by 28.

View Article and Find Full Text PDF

Objective: to study the anatomical feasibility of laser fiber insertion for interstitial thermal therapy via transorbital approach to the temporo-mesial structures (amygdala-hippocampus-parahippocampus complex).

Methods: Anatomical dissections were performed bilaterally on two human cadaveric heads via a transorbital approach, in which screws and laser fibers were used for magnetic resonance imaging-guided laser interstitial thermal therapy (MRIgLITT) assisted by neuronavigation. In addition, eight transorbital trajectories were simulated using the transorbital entry points obtained from a cadaveric radiological study of four patients previously operated on for mesial temporal lobe epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!