Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence of neuritic plaques and neurofibrillary tangles. The impaired synaptic plasticity and dendritic loss at the synaptic level is an early event associated with the AD pathogenesis. The abnormal accumulation of soluble oligomeric amyloid-β (Aβ), the major toxic component in amyloid plaques, is viewed to trigger synaptic dysfunctions through binding to several presynaptic and postsynaptic partners and thus to disrupt synaptic transmission. Over time, the abnormalities in neural transmission will result in cognitive deficits, which are commonly manifested as memory loss in AD patients. Synaptic plasticity is regulated through glutamate transmission, which is mediated by various glutamate receptors. Here we review recent progresses in the study of metabotropic glutamate receptors (mGluRs) in AD cognition. We will discuss the role of mGluRs in synaptic plasticity and their modulation as a possible strategy for AD cognitive improvement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8439550 | PMC |
http://dx.doi.org/10.3233/JAD-201146 | DOI Listing |
Background: The earliest recognized biomarker of AD is deposition of Aβ amyloid that leads to formation of plaques and may, over time, trigger or at least be followed by gliosis/neuroinflammation and neurofibrillary tangles, accompanied by neurodegenerative changes including neuronal and synaptic loss. We have previously reported that semaphorin 4D (SEMA4D), the major ligand of plexin B receptors expressed on astrocytes, is upregulated in diseased neurons during progression of AD and Huntington's disease (HD). Binding of SEMA4D to PLXNB receptors triggers astrocyte reactivity, leading to loss of neuroprotective homeostatic functions, including downregulation of glutamate and glucose transporters (doi:10.
View Article and Find Full Text PDFBackground: Metabotropic glutamate receptor 5 (mGluR5) modulates excitatory glutamatergic synaptic transmission and plays an important role in learning and memory, and in the pathphysiology of Alzheimer's disease (AD). Here, we aimed to assess the alterations of mGluR5 in the hippocampus of AD patients and mouse model, and the association with amyloid pathology.
Method: Immunofluorescence staining was performed on postmortem brain tissue from 35 AD patients and 36 control patients, as well as on the brain tissue slices from 15 months-old 3×Tg and arcAβ mouse models of AD amyloidosis.
Alzheimers Dement
December 2024
Huashan Hospital, Fudan University, Shanghai, Shanghai, China.
Background: Alzheimer's disease (AD) is characterized by the deposition of amyloid plaques and tau neurofibrillary tangles in the brain with continuous cognitive impairment. Although the mechanism underlying AD pathogenesis remains unclear, more evidence suggests that synaptic dysfunction and loss may be an early event in disease progression. Metabotropic glutamate receptor 5 (mGluR5), a kind of G protein-coupled receptor, is involved in AD pathology through modulating synaptic transmission and plasticity and thus exhibits therapeutic effects.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Background: Glutamate is the main excitatory neurotransmitter in the brain, acting through ionotropic and metabotropic receptors, such as the neuronal metabotropic glutamate receptor 5 (mGluR5). The radiotracer [C]ABP688 binds allosterically to the mGluR5, providing a valuable tool to understand glutamatergic function. We have previously shown that neuronal [C]ABP688 binding is influenced by astrocyte activation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Background: Arc is a synaptic immediate early gene that mediates two distinct pathways at excitatory synapses. Canonically, Arc accelerates endocytosis of AMPA receptors by direct binding to TARPgs and endocytic machinery and thereby contributes to mGluR-LTD. Arc also acts at recently potentiated synapses, where it is phosphorylated by CaMKII and binds NMDAR subunits NR2A and NR2B and recruits the PI3K adaptor p55PIK to assemble a signaling complex that activates AKT and inhibits GSK3β.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!