The potential health benefits of probiotics may not be realized because of the substantial reduction in their viability during food storage and gastrointestinal transit. Microencapsulation can be used to enhance the resistance of probiotics to unfavorable conditions. A range of oral delivery systems has been developed to increase the level of probiotics reaching the colon including embedding and coating systems. This review introduces emerging strategies for the microencapsulation of probiotics and highlights the key mechanisms of their stress-tolerance properties. Recent in vitro and in vivo models for evaluation of the efficiency of probiotic delivery systems are also reviewed. Encapsulation technologies are required to maintain the viability of probiotics during storage and within the human gut so as to increase their ability to colonize the colon. These technologies work by protecting the probiotics from harsh environmental conditions, as well as increasing their mucoadhesive properties. Typically, the probiotics are either embedded inside or coated with food-grade materials such as biopolymers or lipids. In some cases, additional components may be coencapsulated to enhance their viability such as nutrients or protective agents. The importance of having suitable in vitro and in vivo models to evaluate the efficiency of probiotic delivery systems is also emphasized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1541-4337.12532 | DOI Listing |
The aging population presents critical challenges to global healthcare systems, with Japan expected to have 35% of its population aged 65 or older by 2040. Older adults often experience multimorbidity, cognitive impairments, and physical frailties, increasing healthcare utilization and costs. Traditional medical approaches that focus on organ-specific diagnoses are insufficient for addressing these multifaceted needs.
View Article and Find Full Text PDFRegen Biomater
November 2024
Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.
Chronic diabetic wounds present significant treatment challenges due to their complex microenvironment, often leading to suboptimal healing outcomes. Hydrogen sulfide (HS), a crucial gaseous signaling molecule, has shown great potential in modulating inflammation, oxidative stress and extracellular matrix remodeling, which are essential for effective wound healing. However, conventional HS delivery systems lack the adaptability required to meet the dynamic demands of different healing stages, thereby limiting their therapeutic efficacy.
View Article and Find Full Text PDFTheranostics
January 2025
Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality worldwide, particularly due to the limited effectiveness of current therapeutic options for advanced-stage disease. The efficacy of traditional treatments is often compromised by the intricate liver microenvironment and the inherent heterogeneity. RNA-based therapeutics offer a promising alternative, utilizing the innovative approach of targeting aberrant molecular pathways and modulating the tumor microenvironment.
View Article and Find Full Text PDFTheranostics
January 2025
Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
The cascade of events leading to tumor formation includes induction of a tumor supporting neovasculature, as a primary hallmark of cancer. Developing vasculature is difficult to evaluate but can be captured using microfluidic chip technology and patient derived cells. Herein, we established an approach to investigate the mechanisms promoting tumor vascularization and vascular targeted therapies via co-culture of cancer spheroids and endothelial cells in a three dimensional environment.
View Article and Find Full Text PDFTheranostics
January 2025
Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
Radiofrequency ablation (RFA), as a minimally invasive surgery strategy based on local thermal-killing effect, is widely used in the clinical treatment of multiple solid tumors. Nevertheless, RFA cannot achieve the complete elimination of tumor lesions with larger burden or proximity to blood vessels. Incomplete RFA (iRFA) has even been validated to promote residual tumor growth due to the suppressive tumor immune microenvironment (TIME).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!